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Résumé
Mots-clés : équité, discrimination indirecte, parité statistique, décorrélation, Machine Learn-
ing

L’essor de l’intelligence artificielle connaît un intérêt croissant de la part du grand public et,
au cours des dernières années, de nombreux articles de presse ont remis en cause son objectivité
en accusant des algorithmes d’être racistes, sexistes, etc. Incitée par l’attention croissante des
régulateurs sur l’utilisation éthique des données en assurance, la communauté actuarielle se
doit de repenser les pratiques de tarification et de sélection du risque pour une assurance plus
équitable. L’équité est un thème philosophique qui possède différentes définitions dans chaque
juridiction, liées les unes aux autres, sans atteindre de consensus à ce jour. En Europe, la Charte
des Droits Fondamentaux définit les lignes directrices sur la discrimination, et l’utilisation des
données personnelles à caractère sensible dans les algorithmes est réglementée. Si le simple
retrait des variable protégées empêche toute discrimination dite « directe », les modèles sont
toujours capables de discriminer « indirectement » les individus grâce aux interactions latentes
entre variables qui apportent de meilleures performances (et donc une meilleure quantification
du risque, segmentation des prix, etc.). Après avoir posé l’état des lieux des concepts clés
gravitant autour de la discrimination, nous illustrons la complexité de les quantifier. Nous
proposons ensuite une méthode innovante, non rencontrée dans la littérature, permettant de
réduire les risques de discrimination indirecte à partir de concepts mathématiques d’algèbre
linéaire. Cette technique est illustrée sur un cas de sélection de risque concret en assurance vie,
démontrant sa simplicité d’usage et ses performances prometteuses.

i



Abstract
Keywords: fairness, indirect discrimination, statistical parity, decorrelation, Machine Learn-
ing

The development of Machine Learning is experiencing growing interest from the general pub-
lic, and in recent years there have been numerous press articles questioning its objectivity:
racism, sexism, . . . Driven by the growing attention of regulators on the ethical use of data in
insurance, the actuarial community must rethink pricing and risk selection practices for fairer
insurance. Equity is a philosophy concept that has many different definitions in every jurisdic-
tion that influence each other without currently reaching consensus. In Europe, the Charter
of Fundamental Rights defines guidelines on discrimination, and the use of sensitive personal
data in algorithms is regulated. If the simple removal of the protected variables prevents any
so-called ‘direct’ discrimination, models are still able to ‘indirectly’ discriminate between indi-
viduals thanks to latent interactions between variables, which bring better performance (and
therefore a better quantification of risk, segmentation of prices, and so on). After introducing
the key concepts related to discrimination, we illustrate the complexity of quantifying them.
We then propose an innovative method, not yet met in the literature, to reduce the risks of
indirect discrimination thanks to mathematical concepts of linear algebra. This technique is
illustrated in a concrete case of risk selection in life insurance, demonstrating its simplicity of
use and its promising performance.
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Note de Synthèse

Les concepts clés et la réglementation autour de la discrimination

L’équité actuarielle est un concept clé pour les assureurs, qui signifie que les individus sont
traités équitablement en matière de risque. Cela permet leur répartition en classes de risques
homogènes, assurant le bon déroulement de la segmentation et de la mutualisation. Mais de
nos jours, avec le développement d’algorithmes complexes, des sources de données plus riches
et l’amélioration des méthodes d’interprétabilité, de multiples sources de biais ont été exposées
et l’objectivité des données et des modèles est remise en question.

Le secteur des assurances fait l’objet d’une attention croissante, le public et les régulateurs
exigeant plus de transparence et de justification sur les questions d’équité. Mais il existe une
multitude de points de vue sur ce sujet. Premièrement, d’un point de vue juridique, la discrim-
ination est définie par la loi comme la différence de traitement entre des individus se trouvant
dans des situations similaires en raison de critères prohibés. Ces critères sont également définis
par la loi, mais dépendent de la juridiction. Par exemple, aux États-Unis, selon les États, les
informations sur l’origine peuvent être utilisées dans toutes les lignes d’assurance, mais elles
sont strictement interdites par la Charte des Droits Fondamentaux de l’Union Européenne.
Lorsque les critères sont utilisés explicitement dans la prise de décision, on parle de discrimina-
tion ‘directe’ et lorsque la pratique est apparemment neutre mais conduit tout de même à des
traitements différents, on parle de discrimination ‘indirecte’. Ensuite, d’un point de vue statis-
tique, il existe de nombreuses définitions différentes de l’équité. Toutes ces définitions tentent
de traduire mathématiquement différentes visions du monde mais ne sont pas compatibles les
unes avec les autres. Les régulateurs demandent aux actuaires d’avoir des modèles équitables
mais ne précisent pas quelle définition utiliser, laissant de nombreuses questions sans réponse.

Jusqu’à présent, les actuaires ont empêché la discrimination directe en ne recueillant pas
d’informations sensibles sur les individus. Cette méthode n’est pas une solution, car il peut
encore y avoir une discrimination indirecte. En effet, si les variables non sensibles ont une
relation de dépendance avec les variables sensibles, ce qui est presque toujours le cas, les modèles
peuvent déduire ces dernières et maintenir un traitement injuste. Ces variables non sensibles
qui permettent d’inférer les variables sensibles sont appelées proxys. De plus, si les informations
sensibles ne sont pas collectées, il est pratiquement impossible de vérifier s’il y a discrimination.

Comme mentionné précédemment, de nombreux articles de recherche ont tenté de fournir
une définition mathématique de l’équité. Il existe deux vision de l’équité : l’équité de groupe,
qui vise à traiter différents groupes de manière égale, et l’équité individuelle, qui vise à traiter de
manière similaire des individus similaires. Parmi la première catégorie, on peut citer la parité
statistique, qui recherche l’indépendance entre la prédiction et les variables sensibles, l’égalité
des opportunités, qui recherche l’indépendance entre la prédiction et les variables sensibles,
conditionnellement à la vraie classe, qui se traduit par l’égalité des taux de vrais et des faux
positifs, et enfin l’égalité des chances qui est la même chose que l’égalité des opportunités,
mais uniquement pour les taux de vrais positifs. Aux États-Unis, le ‘Disparate Impact’ est
une mesure populaire qui est une conséquence de la parité statistique et est utilisée dans les
tribunaux pour prouver une allégation de discrimination, mais ne s’applique qu’à la classification
binaire avec une variable protégée binaire également. Dans la plupart des cas, ces définitions
s’appliquent aux problèmes de classification binaire et pour les problèmes de régression, il y a
moins de définitions d’équité. Pour l’équité individuelle, les critères mathématiques ne sont pas
aussi simples, car cela implique de définir une distance entre les individus pour mesurer leur
similarité, ce qui n’est pas une question triviale.
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Une méthode de prétraitement pour atténuer la discrimination indi-
recte

La problématique de ce mémoire d’actuariat est : comment atténuer la discrimination in-
directe ? Les solutions consistent généralement soit à travailler directement sur les données
(pré-traitement), sur le modèle (pendant le traitement) ou sur les prédictions (post-traitement).
Nous avons décidé de rechercher une méthode de pré-traitement, basée sur l’une des définitions
d’équité de groupe, la parité statistique. Cela permet ensuite l’utilisation de tout type de mod-
èle car le problème est traité le plus en amont possible dans le processus, directement sur les
données.

Nous nous sommes inspirés du processus de Gram-Schmidt, une méthode d’orthogonalisation
d’un ensemble de vecteurs dans un espace avec un produit interne. La covariance est un produit
scalaire dans l’espace des variables aléatoires centrées de variance finie. Pour en revenir à la
définition de la parité statistique, nous recherchons une prédiction indépendante des variables
protégées. Le but de notre méthode est donc de transformer les variables non sensibles de
manière à ce qu’elles deviennent décorrélées des variables sensibles. Bien entendu, il s’agit
d’une approximation, car la corrélation n’est que la composante linéaire de la dépendance.
La non-corrélation équivaut à l’orthogonalité dans l’espace des variables aléatoires centrées à
variance finie, cela nous a donc permis de poser le problème: avec X1, . . . , Xs les s variables
sensibles et Xs+1, . . . , Xn les variables non sensibles, nous cherchons la matrice de passage A
qui donne X ′ = AX, donnant l’expression des nouvelles coordonnées en fonction des anciennes.
Les s premières variables sont inchangées. Cela nous donne une matrice de transition de la
forme

A =


Is

0 . . . 0
...

...
0 . . . 0

as+1,1 . . . as+1,n
...

...
an,1 . . . an,n


Nous cherchons les variables transformées X ′

s+1, . . . , X ′
n telles que corr(Xi, X

′
j) = 0 pour

i = 1, . . . , s et j = s + 1, . . . , n. Cela nous donne un système de s équations à n inconnues,
avec un nombre infini de solutions car n > s. Nous devons poser n − s contraintes de plus de
manière à obtenir un système complet. Nous avons fait le choix d’exprimer chaque nouveau
vecteur en fonction des vecteurs sensibles ainsi que de son homologue dans l’ancienne base :

X ′
k =

s∑
j=1

ak,jXj + ak,kXk

Cela réduit le problème à s équations et s+1 inconnues. Une idée pour la dernière contrainte est
de minimiser la distance entre les anciens et les nouveaux vecteurs non sensibles : min d(Xk, X

′
k).

Le problème a une solution car la distance (correspondant à la variance de la différence des
deux variables aléatoires) est positive. Nous avons enfin :

min
ak,1,...,ak,s,ak,k

d(Xk, X
′
k) tel que


⟨X1, X

′
k⟩ = 0
. . .

⟨Xs, X
′
k⟩ = 0

avec X ′
k =

s∑
j=1

ak,jXj + ak,kXk

En résolvant le problème pour tous les k = s+1, . . . , n nous obtenons A et trouvons X ′ = AX.
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Illustration sur des données simulées simples

Pour illustrer la méthode, nous avons d’abord utilisé des données simulées. La raison est
que nous voulons connaître les véritables relations entre les variables, ce qui n’est pas le cas
avec des échantillons de données réelles. Le processus de simulation repose sur la théorie des
copules. Nous avons créé un jeu de données avec deux variables sensibles binaires, A et B,
quatre variables normales non-sensibles, X(1), . . . ,X(4) et une variable d’intérêt binaire. Toutes
ces variables sont corrélées entre elles de manière controlée.

Nous appliquons ensuite un modèle de régression logistique, choisi pour sa simplicité et
son interprétabilité, utilisant d’abord toutes les variables, puis uniquement les variables non
sensibles et enfin les variables non sensibles transformées.

Le modèle utilisant toutes les variables est, sans surprise, injuste au regard des trois défi-
nitions de l’équité introduites précédemment, parité statistique, égalité des chances et égalité
des opportunités. Selon les trois définitions, les groupes A = 1 et B = 1 sont désavantagés par
le modèle par rapport aux groupes A = 0 et B = 0. Ce modèle fait preuve de discrimination
directe car il y a une différence de traitement entre groupes suite à une utilisation explicite des
variables sensibles.

Lorsque nous supprimons les variables protégées, il y a une légère baisse de la performance
prédictive, mesurée par la précision et l’AUC. En ce qui concerne l’équité, la situation est pire
lorsque l’on regarde la variable A, avec le groupe A = 1 encore plus désavantagé par le modèle
qu’avant, et meilleure lorsque l’on regarde la variable B, avec le groupe B = 1 toujours le plus
défavorisé mais moins qu’avec le modèle utilisant toutes les variables. En n’utilisant pas les
variables sensibles, nous avons donc évité la discrimination directe, mais pas la discrimination
indirecte car il existe toujours une différence de traitement entre les groupes.

Enfin, nous appliquons notre méthode de pré-traitement et transformons les variables non
sensibles. Les matrices de corrélation avant et après transformation en figure 1 montrent le
succès de notre méthode : il n’y a plus de corrélation entre les variables sensibles et les variables
transformées.

(a) Before (b) After

Figure 1: Heatmaps des corrélations avant et après transformation des X(i)

Nous appliquons ensuite le modèle aux variables transformées. Par rapport au modèle
utilisant uniquement des variables non sensibles, il y a une baisse de la performance prédictive
avec une précision et une AUC inférieures. Le modèle traite désormais presque parfaitement
équitablement les groupes selon la définition de la parité statistique, ce qui était l’objectif de
la méthode. Mais quand on regarde les deux autres définitions d’équité, pour la variable A, le
modèle traite les deux groupes de manière plus juste qu’auparavant, mais maintenant c’est le
groupe A = 0 qui est le plus défavorisé. Pour la variable B, le modèle est moins juste qu’avant
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et encore une fois, c’est maintenant le groupe B = 0 qui est le plus défavorisé selon ces deux
définitions.

Pour conclure, supprimer les variables protégées n’est pas une solution pour éviter la dis-
crimination, et selon les relations entre les variables, cela peut soit améliorer, comme nous
l’avons vu avec la variable A, ou détériorer l’équité, comme nous l’avons vu avec la variable B.
Notre méthode a approché l’indépendance avec la non-corrélation, et nous avons réussi à ap-
procher la parité statistique. Mais il y a quelques inconvénients : une baisse des performances,
des problèmes d’interprétabilité concernant les variables transformées et une incompatibilité
avec d’autres définitions d’équité.

Illustration sur des données réelles de mortalité

Nous avons appliqué la même méthode à un cas d’utilisation réel : la mortalité des personnes
diagnostiquées avec un mélanome non métastatique, une forme de cancer de la peau. Pour
réaliser cette étude, nous avons utilisé les données de la base de recherche publique SEER
du National Cancer Institute aux États-Unis. C’est une source d’information très riche et
complète, mais qui a nécessité un long traitement avant de pouvoir être utilisée.

L’analyse de survie est très spécifique car l’objectif est de modéliser la durée de survie, qui
n’est souvent observée que partiellement en raison des phénomènes de censure et de troncature.
Pour résoudre ce problème, nous devons prendre en compte l’exposition de chaque individu et
l’utiliser comme poids dans le modèle de régression logistique standard.

Avant cela, nous avons calculé les taux de mortalité sur cinq ans à partir des données et
examiné les différences en fonction de certains critères. Tout d’abord, nous avons comparé les
taux de mortalité des personnes atteintes de tumeurs de différentes tailles, stades et ampleurs.
Nous avons constaté, en accord avec la littérature médicale, que des tumeurs plus grosses, la
présence de métastases, une propagation plus étendue aux ganglions lymphatiques régionaux
et des stades plus avancés entraînent des taux de mortalité plus élevés. Ensuite, en examinant
les taux de mortalité en fonction des variables sensibles, nous avons constaté que les taux de
mortalité varient selon le sexe, l’origine et le statut civil. Bien que cela puisse être causé par
une plus grande représentation de certains autres facteurs de risque dans ces catégories, nous
suspectons que des problèmes d’équité pourraient survenir lors de la modélisation des taux de
mortalité à partir de ces données.

Une première étape de la modélisation a été la sélection de variables avec trois types de
contraintes : médicale, statistique et de souscription. En effet, les variables qui ne sont pas
pertinentes médicalement, statistiquement ou qui ne peuvent être obtenues au moment de la
souscription ne doivent pas être utilisées dans le modèle. Après cette sélection, il nous reste
trois variables sensibles, que sont le sexe, l’origine et l’état civil, ainsi que douze variables non
sensibles.

Comme pour les données simulées, nous commençons par appliquer notre modèle de ré-
gression logistique à toutes les variables. Le modèle fonctionne très bien, avec une AUC de
0,8769. Nous examinons ensuite les mesures d’équité et, sans grande surprise, nous constatons
que le modèle n’est équitable selon aucune des trois définitions d’équité. En regardant les taux
d’acceptation par origine dans la figure 3a, nous constatons qu’il existe de grands écarts entre
les taux d’acceptation, un groupe étant plus défavorisé par le modèle que les autres.

Lorsque nous supprimons les variables protégées, il y a, comme dans le cas simulé, une légère
baisse des performances. Par sexe, le modèle est plus juste mais le même groupe reste défavorisé
selon toutes les définitions. Par origine, selon la définition, le modèle fonctionne plus ou moins
bien. Pour les taux d’acceptation, comme le montre la figure 3b, les niveaux ont changé mais
il existe toujours des écarts entre les groupes et le même reste le plus défavorisé. Par état civil,
le modèle est plus juste mais le groupe le plus défavorisé n’est plus le même qu’avant.
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Nous appliquons ensuite notre méthode de décorrélation, et obtenons des vecteurs trans-
formés non corrélés aux vecteurs sensibles. La figure 2 donne la matrice de corrélation avant
et après transformation. Lors de l’application du modèle à ces variables transformées, nous
avons encore une diminution des performances prédictives avec une AUC plus faible, à 0,8534.
En regardant les taux d’acceptation par origine, les écarts sont désormais très faibles entre
les groupes. Pour toutes les variables protégées, nous avons la même conclusion : nous avons
presque atteint la parité statistique et l’égalité des chances mais nous sommes moins proches
de l’égalité des opportunités, et le groupe le plus défavorisé a changé.

(a) Données originales (b) Données transformées

Figure 2: Corrélations, avant et après transformation,
corrélations entre les attributs sensibles et les autres encadrées en noir

Nous avons les mêmes conclusions que dans le cas simulé : il ne suffit pas de supprimer
les variables protégées pour avoir un modèle juste, notre méthode nous a permis d’atteindre
approximativement la parité statistique, il y a un compromis entre performance et équité, et
toutes les définitions d’équité ne sont pas compatibles.

(a) Avec toutes les variables (b) Sans variables protégées (c) Variables transformées

Figure 3: Taux d’acceptation par origine
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Executive Summary

Understanding key concepts and regulations around discrimination

Actuarial fairness is a key concept for insurers, meaning that individuals are treated fairly
when it comes to risk. This allows their classification into homogeneous risk classes, ensuring
the smooth running of segmentation and pooling. But nowadays, with the development of
complex algorithms, the richer data sources and the improvement of interpretability methods,
multiple sources of bias have been exposed and the objectivity of data and models is questioned.

The insurance sector is under close scrutiny as both the public and regulators are demanding
more transparency and justification on fairness issues. But there are a multitude of points of
view on this subject. First, on a legal perspective, discrimination is defined by the law as
the difference in treatment between individuals in similar situations due to prohibited criteria.
These criteria are also legally defined, but depend on the jurisdiction. For example, in the US,
depending on the State, information on national origin can be used in all insurance lines, but
it is strictly prohibited by the Charter of Fundamental Rights of the European Union. When
the criteria are used explicitly in the decision-making, we talk about ‘direct’ discrimination and
when the practice is apparently neutral but still leads to different treatments, we talk about
‘indirect’ discrimination. Secondly, on a statistical point of view, there are many different
definitions of fairness. All of these definitions try to mathematically translate world views but
are not compatible with each other. Regulators ask actuaries to have fair models but do not
specify which definition to use, leaving many questions unanswered.

Up until now, actuaries have prevented direct discrimination by not collecting sensitive
information about individuals. This method is not a solution, because there can still be indirect
discrimination. Indeed, if the non-sensitive variables have some dependency relationship with
the sensitive ones, which is almost always the case, models can infer the latter and maintain
unfair treatment. These non-sensitive variables that allow to infer the sensitive ones are called
proxies. Furthermore, if the sensitive information is not collected, it is virtually impossible to
check for discrimination.

As mentioned previously, many papers have tried to provide mathematical definitions of
fairness. They can be separated into two categories: group fairness, which aims to treat different
groups equally, and individual fairness, which aims to treat similar individuals similarly. Among
the first category, we can cite statistical parity, that seeks independence between the prediction
and the sensitive variables, equalized odds, that seeks independence between the prediction and
the sensitive variables, conditionally on the outcome, which translates into having equal true
and false positive rates, and finally equal opportunity is the same as the latter, but only looks
at true positive rates. In the US, the ‘disparate impact’ is a popular metric that results from
the statistical parity definition and is used in courts of law to prove a discrimination allegation,
but it is only for binary classification with a binary protected variable. In most cases, these
definitions apply to binary classification problems but for regression problems, there are fewer
definitions. For individual fairness, mathematical criteria are not as easy to find, because it
requires the definition of a distance between individuals to measure their similarity, which is
not an trivial question.

A pre-processing method to mitigate indirect discrimination

The problematic of this actuarial thesis is: how can we avoid indirect discrimination? So-
lutions usually consist either in working directly on the data (pre-processing), on the model
(in-processing) or on the predictions (post-processing). We decided to look for a pre-processing
method, based on one of the group fairness definitions, statistical parity. This then allows the
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use of any type of model because the problem is dealt with as early as possible in the process,
directly tackling the data.

We were inspired by the Gram-Schmidt process, a method for orthogonalizing a set of vectors
in an inner product space. The covariance is an inner product in the space of centered random
variables with finite variance. Going back on the statistical parity definition, we are looking
for a prediction that is independent of the protected variables. The goal of our method is
therefore to transform the non-sensitive variables such that they become uncorrelated with the
sensitive ones. Of course, this is an approximation, as correlation is only the linear component
of dependence. Uncorrelatedness is equivalent to orthogonality in the space of centered random
variables with finite variance, so this allowed us to set the problem: with X1, . . . , Xs the s
sensitive variables and Xs+1, . . . , Xn the non-sensitive variables, we are looking for the transition
matrix A giving the change-of-basis formula X ′ = AX, expressing the new coordinates in terms
of the old ones. The first s variables stay the same. This gives a transition matrix of the shape

A =


Is

0 . . . 0
...

...
0 . . . 0

as+1,1 . . . as+1,n
...

...
an,1 . . . an,n


We are looking for X ′

s+1, . . . , X ′
n such that corr(Xi, X

′
j) = 0 for i = 1, . . . , s and j = s+1, . . . , n.

This gives a system of s equations and n unknown variables, with an infinite number of solutions
as n > s. We need to set n− s more constraints in order to have a complete system. We made
the choice to express each new vector as a linear combination of the sensitive vectors and of its
equivalent in the old basis:

X ′
k =

s∑
j=1

ak,jXj + ak,kXk

This narrows the problem to a system of s equations and s+1 unknown variables. An idea for the
last constraint is to minimize the distance between the old and the new vectors: min d(Xk, X

′
k).

The problem has a solution as the distance (corresponding to the variance of the difference
between the two variables) is positive. We finally have:

min
ak,1,...,ak,s,ak,k

d(Xk, X
′
k) such that


⟨X1, X

′
k⟩ = 0
. . .

⟨Xs, X
′
k⟩ = 0

with X ′
k =

s∑
j=1

ak,jXj + ak,kXk

Solving the problem for every k = s + 1, . . . , n gives us the transition matrix A, and we can
compute X ′ = AX.

Illustration on simple simulated data

To illustrate the method, we first used simulated data. The reason for this is that we want
to know the true relationships between variables, which is not the case with samples of real
data. The simulation process relies on the theory of copula. We created a dataset of two binary
sensitive variables, A and B, four non-sensitive normal variables, X(1), . . . ,X(4) and a binary
variable of interest. All of these variables are correlated with each other.

We then apply a logistic regression model, chosen for its simplicity and interpretability,
first using all variables, then only non-sensitive variables and finally transformed non-sensitive
variables.
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The model using all variables is, unsurprisingly, unfair under the three definitions of fairness
introduced previously: statistical parity, equal opportunity and equalized odds. Under all three
definitions, groups A = 1 and B = 1 are disadvantaged by the model. This model exhibits
direct discrimination as the result is a difference in treatment after an explicit use of sensitive
variables.

When we remove protected variables, there is slight decline in performance, measured by
the accuracy and the AUC. Looking at fairness, the situation if worse when looking at variable
A, with group A = 1 even more disadvantaged by the model, and better when looking at
variable B, with group B = 1 still the most disadvantaged but less than with the model using
all variables. By not using the sensitive variables, we have avoided direct discrimination, but
not indirect discrimination as there is still a difference of treatment between groups.

Finally, we apply our pre-processing method and transform the non-sensitive variables. The
correlation matrices before and after transformation in figure 4 show the success of our method:
there are no more correlations between the sensitive variables and the non-sensitive transformed
variables.

(a) Before (b) After

Figure 4: Heatmaps of correlations before and after transformation of the X(i)

We then apply the model to the non-sensitive transformed variables. Compared to the model
using only non-sensitive variables, there is a decline in performance with a lower accuracy and
AUC. The model now treats the protected groups almost perfectly fairly under the statistical
parity definition, which was the goal of the method. But when we look at the other two
definitions, for variable A, the model treats both groups in a fairer way than before, but now it
is group A = 0 that is the most disadvantaged. For variable B, the model is less fair than before
and again, it is now group B = 0 that is the most disadvantaged under these two definitions.

To conclude, simply removing protected variables is not a solution to avoid discrimination,
and depending on the relationships between variables, it can both improve, like we saw with
variable A, or deteriorate fairness, like we saw with variable B. Our method approximated
independence to uncorrelatedness, and we have managed to approximate statistical parity. But
there are multiple drawbacks: a decrease in performance, interpretability issues concerning the
transformed variables and incompatibility with other definitions of fairness.

Illustration on real mortality data

We finally applied the same method to a real-life use case: the mortality of individuals
diagnosed with non-metastatic melanoma of the skin cancer. In order to perform this study,
we used data from the public research SEER database of the National Cancer Institute in the
United States. It is a huge source of information, but required lengthy processing.
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Survival analysis is very specific as the goal is to model survival duration, which is often
observed only partially because of censuring and truncation phenomena. To tackle this issue,
we need to take into account the exposure of each individuals and use it as a weight in the
logistic regression model.

Before doing so, we computed five-year mortality rates from the data, and looked at the
differences depending on some criteria. First, we compared mortality rates for individuals with
tumors of different sizes, stages and extents. We found, consistently with medical literature,
that bigger tumors, the presence metastasis, more extensive spread to regional lymph nodes
and higher stages result in higher mortality rates. Then, looking at mortality rates depending
on sensitive variables, we found that mortality rates vary on sex, origin and marital status.
Although this could be caused by greater representation of certain risk factors in some of these
categories, it gives us a first hint at fairness issues that could arise when modeling mortality
rates using this data.

A first step for this modeling was variable selection under three types of constraints: medical,
statistical and underwriting. Indeed, variables that are not relevant medically, statistically or
cannot be obtained at the underwriting stage should not be used in the model. We are left with
three sensitive variables, Sex, Origin and Marital Status, and twelve non-sensitive variables.

Like for the simulated data, we begin by applying our logistic regression model to all the
(selected) variables. The model performs very well, with an AUC of 0.8769. We then look at
fairness metrics, and with little surprise we see that the model is not fair under any of the three
fairness definitions. Looking at acceptance rates by Origin in figure 6a, we see that there are
large gaps between acceptance rates, with Black the most disadvantaged group.

When we remove the protected variables, there is, like in the simulated case, a slight decrease
in performance. By Sex, the model is fairer but the same group is still disadvantaged under all
definitions. By Origin, depending on the definition, the model performs better or worse. For
acceptance rates, as shown in figure 6b, the levels have changed but there are still gaps between
groups and Black remains the most disadvantaged group. By Marital Status, the model is fairer
but the most disadvantaged group is not the same as before.

We then apply our change of basis method, and obtain transformed non-sensitive vectors
uncorrelated to the sensitive ones. Figure 5 gives the correlation matrix before and after
transformation. When applying the model to these transformed variables, we have another
decrease in performance with a lower AUC, at 0.8534. Looking at acceptance rates by Origin
in figure 6c, the gaps are now very small between groups, and Asian or Pacific Islander is
now the most disadvantaged group, even if not by much. For all protected variables, we have
the same conclusion: we have almost reached statistical parity and equal opportunity but are
further away for equalized odds, and the most disadvantaged group has changed.
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(a) Original data (b) Transformed data

Figure 5: Heatmap of correlations, before and after transformation,
correlations between the sensitive attributes and the others framed in black

We have the same conclusions as in the simulated case: simply removing the protected
variables is not enough to have a fair model, our method allowed us to approximately reach
statistical parity, there is a performance-fairness trade-off, and not all fairness definitions are
compatible.

(a) With all variables (b) Without protected (c) Transformed variables

Figure 6: Acceptance rates by Origin
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Introduction

In many sectors, Machine Learning models have been exposed as unintentionally discrimina-
tory, leading to unfair decisions that can have drastic consequences. The insurance industry has
always been under close scrutiny when it comes to the use of personal data and discrimination
issues, but in the light of recent denunciations in all industries, the attention on fairness issues
has grown.

Fairness is a complex philosophical matter, and there is no single definition for it. Re-
searchers have managed to define it statistically, but the definition depends on underlying
assumptions and ideologies. Furthermore, as of today, many methods have been proposed to
come closer to some definitions of fairness, but none can ensure perfect fairness.

Regarding previous points, we wonder to what extent fairness can be approximated when
applying a Machine Learning model to insurance mortality data, and more specifically to what
extent proxy discrimination can be avoided. This thesis aims at illustrating the complexity of
quantifying discrimination and finding a way to mitigate it. For this purpose, we propose a
simple and promising method that relies on linear algebra to mitigate indirect discrimination.

All along the thesis, we have provided the reader with summaries and key points in the
form of light blue frames.
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1 Understanding key concepts and regulations around dis-
crimination

1.1 The life insurance industry

Historically, life insurers have used classic statistical models to assess risks for their products,
covering Mortality, Critical Illness1, Disability, Longevity and Medical Expenses. But with the
development of Machine Learning and the now richer than ever data sources, new techniques
are becoming more and more popular. These methods imply new challenges for actuaries,
mostly due to the richness of information and the complexity of algorithms.

1.1.1 Actuarial fairness

One of the challenges concerns the notion of equity, which has always been a key issue for
insurers. ‘Actuarial fairness’ means that risky insureds should contribute more and pay a higher
premium. Actuaries have to determine how to classify policyholders between risky and non-
risky, and more specifically what attributes are good indicators of risk. They then rely on
historical data to estimate losses [26]. It is sometimes complicated to know if an attribute is
directly related to risk or not. As we will see later on, there are country-specific regulations
concerning the use of certain attributes for risk assessment.

1.1.2 Segmentation, pooling and adverse selection

Before insurance, the only way of hedging against risk was individual prudence. Pooling
offered a new way to deal with uncertainty: losses were the collective responsibility of the pool.
This created insurance solidarity with an understanding of fairness [20]. Today, insurers offer
contracts at large levels, counting on the compensation between policyholders who file claims
and those who do not. In order to ask for premiums accordingly to a policyholder’s risk profile,
insurers do a segmentation of the insureds [15]. Segmentation consists in creating homogeneous
classes and estimating the risk on average [5], so that premiums are adapted to the risk profile.

The pure premium is the expected loss of the insured over the coverage period. Since pooling
is based on the law of large numbers, risks have to be homogeneous, which is why insurers need
to classify the risks properly. The classification is based on observable factors, which should
indicate what the risk is [26].

If groups are heterogeneous, policyholders could cross-subsidy. This leads to adverse selec-
tion: lower risks are asked to pay more than their expected loss because they are not classified
in the right pool, so they are attracted by a competitor who will offer lower prices.

1.1.3 Risk modeling

Life insurers model biometric risks, which relate to human life conditions, and more specif-
ically the duration until the occurrence of an event. In our case, we will be studying the
mortality of cancer patients.

1Critical illness insurance compensates insureds with a lump sum payment upon diagnosis in order to cover
treatment costs [9].
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Individuals with cancer history are considered ‘aggravated risks’ and are often offered cov-
erage with deterrent premiums, based on limited and imprecise criteria. But each cancer is
specific and the evolution of treatment possibilities has tremendously increased survival odds
in the past few years. At SCOR, the medical underwriting team is in charge of providing in-
clusive solutions for cancer patients. By using all available information about individuals, we
can precisely estimate mortality rates thanks to Machine Learning models. These precise rates
help insurers offer fair premiums to individuals with a history of cancer.

For cancer patients, insurers model the duration before death in the context of mortality
or longevity products. Information about these individuals can also be used for critical illness
products, to model the duration before the occurrence of a cancer. Once the R&D department
has studied the rates linked to the covered condition, the pricing team takes over to put the
add-on cover or product on the market. The underwriters can also benefit from the study to
better assess risk profiles.

To do this modeling, we need to take into account a few constraints:

• Underwriting constraints: the variables used by the model need to be available to the
underwriter, ie be included in the medical file of the individual. Depending on the local
legislation, models must not be discriminatory against certain population, so as a ‘solu-
tion’, some variables are simply deleted. The insurer also has business constraints as he
is in a competitive market.

• Medical constraints: the variables and the coefficients they are attributed need to be
coherent with medical literature. For example, variables that are not medically relevant,
such as the address, cannot be used by the model. Another example of variable coherence
is if a larger tumor size implies a shorter life expectancy, it must be reflected by the model.

• Modeling constraints: the variables must be statistically relevant, not too numerous nor
strongly correlated with each other.
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1.2 Fairness and bias

As we saw with the constraints of variable selection, depending on the local regulation,
selected variables must not lead to discriminatory results. Fairness and bias is not a new subject
in Machine Learning, but it has received increasing attention these past years, as numerous
examples of unfair and biased outcomes were revealed in various fields. The most famous one
is the COMPAS Recidivism Algorithm, which was proved biased against black defendants [35].
As actuaries use high dimensional data and complex models, to price contracts for example,
they need to check that the outcomes are not biased. We need to define fairness and bias, see
how it impacts insurance and find a method to detect it.

1.2.1 The need for fairness in insurance

Reputation Fairness is a key issue in insurance, because actuaries need to explain to un-
derwriters how their models work, so that in turn policy applicants can understand and trust
the process to be fair. Insurance is not a well-seen sector in the public opinion and by the
authorities in general, which is why fairness and transparency are crucial subjects.

Regulation In the EU, the GDPR (General Data Protection Regulation) gives individuals
the right to control their personal data, and specifically ‘the right not to be subject to a
decision based solely on automated processing, including profiling, which produces legal effects
concerning him or her or similarly significantly affects him or her’ [25]. This means that a
human intervention is required in any automated decision process. Individuals also have a right
to erasure, or ‘right to be forgotten’ [24], which means that datasets might not be complete,
independently of the collection process.

But there are specific regulations for the insurance sector. The French Supervisory Au-
thority, the ACPR, requires appropriate data management, with ethical considerations such as
fairness of processing and absence of discriminatory bias [1].

In April 2021, the EU proposed the first-ever legal framework on Artificial Intelligence (AI),
the AI Act. The proposal is to define four levels of risk, from unacceptable to none, concerning
AI systems. Each category will be subject to requirements and specific obligations such as
conformity assessments and registration in a database. It could become applicable as soon as
the second half of 2024 [16]. Insurers do not know how they will be impacted by this new
regulation, but if their AI systems are classified as risky, they will be under strict regulation.

All in all, there is a regulation stacking that needs to be understood. The real question is:
which regulation will be predominant?

1.2.2 A multitude of points of view

Fairness is a relative notion that has many different definitions. A. Narayanan gave 21
definitions for fairness in classification tasks [40]. It is a legal requirement, but also an ethical
concept [15]. Definitions can be categorized into individual or group fairness. Individual fairness
aims to treat similar individuals similarly and group fairness treats different groups equally [37].
But group fairness might appear unfair at the individual level and a generalization based on
group membership may be wrong [7]. There are therefore two opposite worldviews regarding
fairness with respect to a specific task: We’re All Equal (WAE), meaning all groups have

4



similar abilities, and What You See Is What You Get (WYSIWYG), meaning observations
reflect similar abilities [6]. From this, many statistical definitions have been created to measure
fairness for model outcomes, mostly for classification. We will study some of them in detail
later on.

Machine Learning is a statistical discrimination by nature, but it becomes objectionable
when there is a systematic advantage for some privileged group. All definitions of fairness
cannot be reconciled and cannot satisfy all aspects. There needs to be a legal study to provide
an official definition of fairness and an associated metric.

1.2.3 The different types of bias

Statistical fairness is strongly related to bias, which can be defined differently depending on
the sector. In statistics, it is a systematic error in prediction outcomes [6]. For Machine Learning
models, it can be introduced by users, come from the data or be amplified by algorithms. And
it is a vicious circle, as algorithms learning from biased data give biased outcomes which will
be fed into and amplified by future algorithms [37].

There are three types of biases that appear in classification problems [5]:

• Type 1: classes do not reflect the reality of the risk,

• Type 2: classes reflect a correlation with risk that is non-causal,

• Type 3: classes reflect a causal statistical reality, but are unacceptable because of ethical
reasons.

1.2.4 Unfair and fair discrimination

To better understand and scope the concept from a scientific point of view, we discussed with
different lawyers specialized in data law. Those exchanges helped us focus on the different key
concepts exposed below.

Legal definition Discrimination is the difference in treatment between individuals in similar
situations due to prohibited criteria. In France, the Penal Code [22] defines these criteria in
the Article 225-1:

‘their origin, their sex, their family situation, their pregnancy, their physical appear-
ance, the particular vulnerability resulting from their economic situation, apparent
or known to its author, their surname, their place of residence, their state of health,
their loss of autonomy, their disability, their genetic characteristics, their morals,
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their sexual orientation, their gender identity, their age, their political opinions,
their trade union activities, their ability to express themselves in a language other
than French, their membership or non-membership, real or supposed, of an ethnic
group, a nation, a so-called race or a determined religion’

These general prohibitions to fight against discrimination are supplemented by the French
Insurance Code, and the Article L117-2 states that there can be absolutely no distinction
between individuals based on:

• age for access to insurance guarantees or termination of insurance benefits, with the
exception of pricing for life insurance contracts with mortality tables;

• pregnancy and motherhood for premium and benefit computation;

• sex for premium and benefit computation, except for mandatory supplementary pension
schemes.

The Article 16-13 of the Civil Code [21] defines an absolutely prohibited criteria that is appli-
cable to insurance:

‘No one may be discriminated against because of their genetic characteristics.’

Other criteria can be used if they are a justified business necessity, or to modulate premiums
and guarantees.

The nature of insurance As we saw in section 1.1.2, insurance is based on segmentation and
pooling. It is about treating different risks differently. Classification and regression tasks are by
definition a form of discrimination: the aim is to distinguish individuals based on a statistical
similarity [4]. This is a form of discrimination that is justified and deemed acceptable if it does
not systematically put a protected group at a disadvantage.

Unfair discrimination Discrimination is unfair when a certain group is treated unequally
based solely on their affiliation to it [32]. Direct discrimination happens when protected at-
tributes are explicitly used to make the decision. Indirect discrimination happens when the
treatment appears neutral and depends on non-protected attributes, but protected groups get
treated unjustly [37]. Harmful discrimination in insurance can happen at several stages: for the
decision to insure, during the underwriting or marketing phases, to renew or cancel policies,
for coverage offer or for pricing [20].

1.2.5 Interpretability: a first step to tackling bias

Interpretability is the degree to which a human can understand the cause of a decision.
Some models are directly interpretable and others, qualified as ‘black box’ models, need in-
terpretability methods. As the need to explain Machine Learning models become more and
more important, a new research field XAI, for eXplainable Artificial Intelligence, was created.
Understanding why a model predicted specific outcomes is a first step in bias detection [39].
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Interpretable models Some models are directly interpretable because of their structure.
Linear Regressions predict the target as a weighted sum of the feature inputs, but assume
linear relationships. Generalized Additive Models take into account non linear effects. Decision
trees and decision rules are easy to interpret and capture feature interaction.

Model-agnostic explanation methods Global methods explain how features affect the
prediction on average. Techniques include feature interaction detection, prediction function
decomposition, feature importance measure and representative data points choice.

Local methods explain the individual predictions. Techniques include the description of
how changing a feature changes the prediction, of which features anchor a prediction, of which
features would need to be changed to change a prediction and of which individual features are
attributed to a prediction.

Detecting bias Having more information on which variables play an important role in pre-
dictions, which variables interact with each other and more generally what causes a prediction
can help detect bias. The outcome might be biased if a protected attribute has a great impor-
tance in the prediction or if an important variable for the prediction has a strong correlation
with a protected attribute. This can help find out where the bias actually comes from.
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1.3 The expression of fairness and bias in data

Feature selection is the process of choosing what attributes are observed and taken into
account for analysis. They are necessarily a reduction of reality and fail to capture real-world
phenomena [4]. But obtaining sufficiently rich information is not always possible, and insurers
have to rely on reductive data.

1.3.1 Sensitive variables

Insurers are not allowed to use all variables that are available to them, because they are
viewed as protected or sensitive, and using them might lead to biased outcomes. The choice of
which variables are allowed depends on regulators, but also on society as a whole, because it is
both a legal and ethical concern. Often, attributes that are not under the control of individuals
are not accepted. Attributes that change over time are accepted, because individuals are on
both sides at different stages in their life. Acceptable variables should be good predictors of
risk. If attributes are known to cause a risky event they are accepted [20].

Regulation

EU The European Union has anti-discrimination legislation, in the Charter of Fundamental
Rights, that applies to the insurance sector, but it can have the effect of restricting flexibility
of risk management and raising costs and legal insecurity, which means that insurers offer
less effective coverage. Lawmakers decide which factors are determining for risk assessment
but they are not specialists. With these directives, insurers cannot perfectly prevent adverse
selection and moral hazard, and as a consequence, consumers can end up penalized, paying
higher premiums and deductibles [42].

France There is an evolving conflict between insurance and anti-discrimination standards:
on the one hand, insurers classify risks and on the other, the law prohibits the differentiation of
individuals based on criteria that deny equal dignity. Insurers can select risks as long as they
demonstrate the objectivity and statistical foundations of the data they rely on to do so. The
Insurance Code completely forbids discrimination based on pregnancy and motherhood, risk
selection for supplementary pension and the use of genetic information [44]. In 2011, the EU
court ruled that insurers offering different prices to men and women violated gender equality
laws, and this affected car, term life, health insurance and annuities [34]. This means that
there is no possible discrimination on these criteria, even though there are some technical and
pragmatic arguments for using them.

US Recently, unfair discrimination has become closely connected to disparate impact (see
section 1.4.1). It is a measure of how a practice affects a group more than another, even when
it appears neutral. But as of 2009, no court had applied the disparate impact standard to
evaluate insurance rates [38]. Unfair discrimination in insurance is indeed not exactly equiv-
alent to disparate impact. In State law, unfair discrimination happens when similar risks are
treated differently for determining rates, coverage, benefits and terms and conditions of policies.
Depending on States, certain factors are prohibited for risk classifications and in underwriting
decisions. But laws are not as restrictive as one could believe: in fifteen States, it is only
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prohibited to use race as the only factor regarding a decision to issue or continue a policy and
in four states there are no restrictions on the use of race for underwriting personal automobile
insurance [49].

In July 2021, the governor of Colorado signed a Senate Bill on insurers’ use of external
consumer data [47]. Insurers in the state are prohibited from unfairly discriminating on several
variables. Unfair discrimination is defined as including

‘the use of one or more external consumer data and information sources, as well
as algorithms or predictive models using external consumer data and information
sources, that have a correlation to race, color, national or ethnic origin, religion,
sex, sexual orientation, disability, gender identity, or gender expression, and that
use results in a disproportionately negative outcome for such classification or
classifications, which negative outcome exceeds the reasonable correlation to the
underlying insurance practice, including losses and costs for underwriting.’

This means that insurers using external consumer data in Colorado will need to provide a
disparate impact analysis [33], even though it is not a synonym for unfair discrimination. The
following question is: will other states follow in the same direction as Colorado?

What are they?

Forbidden variables in France are pregnancy, motherhood and genetic information in all
processes. For car, term life, health insurance and annuities, gender is a forbidden variable.
In the US, there are some rules that come from federal law: insurers cannot consider pre-
existing health conditions or gender in the underwriting process, genetic information in coverage
availability or premium charging, or housing practices that have a disparate impact on protected
classes. There are no other federal laws regulating what criteria can be taken into account.
Historically, States are responsible for regulating insurance discrimination. These regulations
strongly depend on which state and insurance line are in question: nine States completely
prohibit the use of race and national origin in all lines, 7 states religion, one state gender and
five States sexual orientation. Louisiana explicitly allows the use of race for life insurance. No
State completely bans the use of age, credit score, genetic testing or ZIP Code [3].

Sensitive variables in France are those defined in the anti-discrimination law that are not
forbidden, as we saw in section 1.2.4. They can only be used if statistical data proves their
relevance and objectivity for risk analysis. Information on ethnicity, religion, sex, gender, sex-
ual orientation, disability, and age can be viewed as sensitive. Less obvious sensitive variables
include parenthood, military service, political party, socioeconomic status, or involvement in
the criminal justice system.

1.3.2 Proxy variables

Proxies are unprotected variables that are strongly correlated to protected variables but also
contain strong predictive information. Using proxy variables may result in indirect discrimina-
tion [4]. Insurers seek good segmentation of risk and profit maximization, but this might lead
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to perpetuating inequalities in society if outcomes are biased because of the variables that are
used for prediction.

Name and surname Accuracy of guessing the national origin of names varies significantly by
the individual perception of national origin. Numerous characteristics matter, such as gender,
popularity and the average level of educations of mothers who gave that name [23]. A name
depends on the culture of group, trends, the social level and time. With a name, you could
identify the sex and the national origin of a person. You could also estimate the average age of
people who have that name based on trends and popularity, but it would be difficult to infer
the exact age [15].

Address In the US, Black and Hispanic segregation and spacial isolation is still very active
in some metropolitan areas [45]. This means that addresses are good proxies for ethnicity,
and classifiers using this variable will exhibit discriminatory behavior [31]. The term redlining
comes from the 1930s when residential security maps were created to indicate which parts f a
city were safe to invest in: neighborhoods outlined in red were the riskiest [36]. From the 1960s,
in the context of the struggle for Black Civil Rights, the use of redlining for risk classification
was strongly criticized. The address is a non-causal variable, but it is strongly correlated with
non-observable risk factors and with ethnicity [5].

There is a strong correlation between income and ethnicity and between income inequality
and income segregation in the US. This is partly due to housing discrimination after World War
II, forcing Black families with lower incomes to live in proximity in urban areas [43]. Addresses
are therefore strongly correlated with income, which is strongly correlated with ethnicity.

Night lighting and wealth are correlated, and it is possible to approximately estimate how
wealthy a neighborhood is from satellite imagery with a strong predictive power [30]. Address
(and its associated satellite images) is a proxy for wealth.

With Google Street View, it is also possible to use the number and type of cars to infer
wealth, ethnicity, education level and political preferences. It is also easy to detect the presence
of handicap access ramps [27] or a flag indicating national origins, political preferences or sexual
orientations [15].

Occupation Despite efforts for parity in the workplace, numerous occupations are still dom-
inated by one of the two genders. In 2016 in a representative French region, sectors such as
social working, healthcare and teaching are mostly feminine and industry, construction and
transportation are mostly masculine. Another visible trend is that very feminine sectors tend
to become even more so [18].

In 2018 in France, 18% of employees worked part-time, 78% of which were women [17].
Knowing an individual works part-time means it is three times more likely that it is a woman.

Credit score This variable cannot be measured directly, as it comes from the problem defini-
tion of creditworthiness. It is a non-arbitrary definition, not a given. The definition process can
already itself be biased [4], as it relies on measurable attributes that are available. The choice
of which variables to use can introduce discrimination. Credit scores also create a vicious circle
in terms of poverty, and using this variable introduces a disparate impact on racial minorities
and low-income households, who then have to pay a higher premium [15].

Face With the boom of facial recognition softwares, there are numerous opportunities of
application. It is now possible to use facial recognition tools for health assessment by using
measurements and proportions of facial attributes. They may be considered biometric data,
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so there are ethical issues surrounding their use [10]. Facial recognition can accurately predict
gender and ethnicity, which raises moral questions.

Speech The way an individual talks can indicate origin if he or she has difficulties with
pronunciation, has a strong accent or speaks in a dialect. Linguistic profiling is the identification
of an individual’s ethnicity based on how their voice sounds and using that information for
discrimination [48].

Current Natural Language Processing tools are trained on traditional written sources, which
are different from spoken language, and even more from dialectal spoken language. The latter
are more likely to be incorrectly classified, so bias can arise, with an incorrect representation
of ideas and opinions from minority groups [8].

Chatbots are rule-based, information retrieval or learning-based systems that are widely
used today. In March 2016, a Microsoft chatbot was supposed to improve its small-talk capa-
bilities by learning from conversations with human users. In less than a day, it was displaying
racist and sexist abusive content [46]. This shows that technical difficulties must be tackled
in order to avoid such outcomes, especially when black box algorithms are used for treating
voices.

In insurance, writing or speaking chatbots are used to report insurance claims. For example,
Izzy Constat is a tool for amicable reports after a car accident. The chatbot asks for drivers’
identities and context and generates a sketch representing the incident [13]. What if this chatbot
were biased against a group that had a specific dialect? This could result in understating the
severity of impact and lower benefits.

Network Who you know either gets you access to resources or makes you guilty by associ-
ation. Recommendation systems are based on similarity between individuals, and if insurers
had access to this kind of information, they could find customers and limit their financial risks.
But this kind of practice may not be ethical, as people who are already marginalized can be
even more affected [11].

There are many other variables with more or less predictive power that could be used as
proxies for protected attributes. We will not be able to list them all, but the conclusion is that
a study of their meaning and how they are linked to protected attributes is essential before
using them as inputs in a prediction model.
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1.4 How to measure fairness

Numerous metrics have been created to measure bias and fairness, the two notions not being
distinct in most works. The general setting is the following:

• X ∈ X ⊂ Rn is the set of n non-protected variables,

• A ∈ A is the protected or sensitive variable,

• Y ∈ Y is the true outcome,

• f is the predictor, classifier or regressor,

• Ŷ = f(X,A) ∈ Y is the predicted outcome.

1.4.1 Binary classification

In the binary classification setting, Y = {y−, y+}. Y = y− means the outcome is negative
and Y = y+ means the outcome is positive. In this problem, it is possible to compute the
confusion matrix between the true and predicted outcomes for each protected group, see table
1.

Predicted outcome
Positive Negative

True outcome Positive TP FN
Negative FP TN

Table 1: Confusion matrix
TP: True Positive, FN: False Negative, FP: False Positive, TN: True Negative

The most common metrics in the literature are the following [2].

Statistical parity (or demographic parity) requires the likelihood of a positive outcome to
be the same for all protected groups ie Ŷ ⊥⊥ A:

∀a ∈ A,P(Ŷ = y+|A = a) = p

This is equivalent to having the same predicted acceptance rates AR for all protected groups:

AR =
TP + FP

TP + TN + FP + FN

Equalized odds requires all protected groups to have the same probabilities of being cor-
rectly assigned a positive outcome and of being incorrectly assigned a positive outcome ie to
have the same true and false positive rates ie Ŷ ⊥⊥ A|Y :

∀(y, a) ∈ Y ×A,P(Ŷ = y+|Y = y, A = a) = p

This is equivalent to having the same true positive rates TPR and false positive rates FPR for
all protected groups:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

Remark: the true positive rate is also called recall or sensitivity.

12



Equal opportunity is the same as equalized odds but only requires all protected groups to
have the same probability of being correctly assigned a positive outcome ie requires the same
true positive rates TPR for all protected groups:

∀a ∈ A,P(Ŷ = y+|Y = y+, A = a) = p

Disparate Impact is a popular metric in the US to measure bias. It is defined as the ratio
in probability of favorable outcomes between groups A = 0 and A = 1 [6]:

DI =
P(Ŷ = 1|A = 0)

P(Ŷ = 1|A = 1)

It is a consequence of the statistical parity definition, in the case where the probabilities are
non-null. A Disparate Impact of 1 would mean that the model is fair, lower than 1 that the
model is unfair to group A = 0 and above 1 that the model is unfair to group A = 1. This
Disparate Impact is only defined in the case of a binary classification with a binary protected
variable. Its estimation is not as easy as we could think, because of its definition as a ratio: we
can have robust estimators for both probabilities, but the estimator of a ratio is not the ratio
of estimators. This is why we decided not to use this fairness metric and to keep the original
definition of statistical parity which is not as restrictive.

1.4.2 Extension of the metrics to other settings

Most of these definitions can be extended to a multi-class classification (Y ⊂ N) or a regression
(Y ⊂ R) setting: by defining a subset Y+ ⊂ Y (respectively Y− ⊂ Y) of values reflecting a
positive (respectively negative) outcome, we adapt the definitions from the previous section:

Statistical parity: ∀a ∈ A,P(Ŷ ∈ Y+|A = a) = p

Equalized odds: ∀a ∈ A,P(Ŷ ∈ Y+|Y ∈ Y+, A = a) = P(Ŷ ∈ Y+|Y ∈ Y−, A = a) = p

Equal opportunity: ∀a ∈ A,P(Ŷ ∈ Y+|Y ∈ Y+, A = a) = p

This supposes that we can categorize every value of output as either positive or negative.
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1.4.3 Model evaluation

We will compare models using the confusion matrix and metrics deriving from it:

• The accuracy is the proportion of correct classifications among all classifications.

Accuracy =
TP + TN

TP + TN + FP + FN

• The true positive rate is the proportion of correct positive classifications among actual
positive values.

TPR =
TP

TP + FN

• The false positive rate is the proportion of wrong positive classifications among actual
negative values. It is sometimes called the probability of false alarm.

FPR =
FP

FP + TN

• The acceptance rate is the proportion of positive classifications among all classifications.

Acceptance rate =
TP + FP

TP + TN + FP + FN

In order to evaluate a model, we need to take into account the facts that:

• An acceptable accuracy threshold depends on the context of the prediction: do we need
to be perfectly accurate in order for the decision to be accepted by society? Do mistakes
cost a lot to the company? Furthermore, if there is a large class imbalance, accuracy is not
the best metric as it can be very high while the model only fits the majority population.

• Missclassification errors are more or less acceptable depending on the context. For exam-
ple, in a risk selection decision, underwriters want to select ‘good’ risks. It is generally
more acceptable and less costly to falsely reject good risks than falsely accept bad risks.

14



2 Simulated data
We will apply discrimination detection and correction methods to simulated data before

tackling a real use case. The reason for this is that we wish to know the answer to the
question ‘Is my prediction discriminatory towards a group?’ while knowing how the outcome
was computed, so that we can look for a solution to a well-defined problem, instead of having
to make assumptions.

We will begin by generating our data, which consists of two sensitive variables A1 and A2, a
set of non-protected variables X = {Xi}i=3,...n, n ∈ N and a variable of interest Y . All variables
can be correlated with each other, but depending on the country and its regulation, insurers
are not always allowed to use A as an explanatory variable, and sometimes, with the GDPR
for example, cannot even collect the information. In this section, however, we will suppose that
the variable is available, because it is the only way to measure discrimination.

To link with a real-life example, if we were in a pricing context for automobile insurance, A
could represent gender, B marital status, the Xi other variables such as age or car value and Y
the claim occurrence. Gender is not the cause of an accident, but statistically we observe that
gender and claim occurrence are correlated. Intuitively, we should not discriminate based on
gender, because it would be unfair as it is a stereotype, but we do not have access to a ‘fairer’
variable, which could be driving behavior.

For simplification reasons, we will suppose that the protected variables and the outcome
are binary. We will begin by giving the theoretical framework, then illustrate the simulation
process with two variables, and finally create the dataset.

2.1 A reminder on statistical tools used to set the framework

In this section, we will pose important mathematical concepts that will help understand the
observed effects on the fairness metric.

We want to generate the variables while controlling the relationship they have with each
other. To do so, we will use the theory of copulas.

Notations

First, we need to introduce some notations:

- f is a probability density function and F the associated cumulative distribution function:
F ′ = f

- E is the expected value and V ar the variance
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- Σ is the covariance matrix: Σi,j = cov(Xi, Xj)

- R is the correlation matrix: Ri,j = corr(Xi, Xj)

- ϕ is the probability density function and Φ the cumulative distribution function of a
standard normal distribution N (0, 1)

- ϕR is the probability density function and ΦR the cumulative distribution function of a
standard multivariate normal distribution Nn(0, R)

Probabilities [14]

Definition 1. A X = (X1, . . . , Xd)
T d-dimensional real random vector is a standard normal

random vector if all of its components Xi, i = 1, . . . , d are independent and follow a standard
normal distribution.

Definition 2. A X = (X1, . . . , Xd)
T d-dimensional real random vector follows a multivariate

normal distribution if there exists a random k-vector Z, which is a standard normal random
vector, a d-vector µ and a k × d matrix A of full rank such that X = AZ + µ.
We denote X ∼ Nd(µ,Σ) where µ = E[X] = (E[X1], . . . ,E[Xd])

T is the mean vector and
Σ = AAT is the covariance matrix.

Definition 3. The multivariate normal distribution is non-degenerate when the covariance
matrix Σ is positive definite, in which case it has the following density

fX(x1, . . . , xd) =
exp(−1

2
(x− µ)TΣ−1(x− µ))√

(2π)k|Σ|

where x = (x1, . . . , xd)
T ∈ Rd and |Σ| = det(Σ) is the determinant of Σ.

Proposition 1. For any univariate cumulative distribution function F ,

U ∼ U([0, 1]) ⇒ F−1(U) := X ∼ F

Definition 4. Set X and Y two continuous random variables. X and Y are independent if
and only if FX,Y (x, y) = FX(x)FY (y).

Definition 5. Set X and Y two continuous random variables with finite variance. Pearson’s
linear correlation coefficient is defined as

corr(X, Y ) =
cov(X, Y )√

V ar(X)V ar(Y )

Remark: Pearson’s correlation coefficient is linear:

corr(X, Y ) = ±1 ⇐⇒ ∃ a, b, Y = aX + b a.s.

Proposition 2.

X ⊥⊥ Y ⇒ corr(X, Y ) = 0

corr(X, Y ) = 0 ⇏ X ⊥⊥ Y

Remark: This proposition means that uncorrelated data is not independent in general. Further-
more, correlation does not imply causation, meaning that we cannot deduce a cause-and-effect
relationship between variables solely based on their correlation. However, in the case of a mul-
tivariate normally distributed random vector, variables that are uncorrelated are independent.
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Proposition 3. Set X and Y two random variables. For any measurable function Ψ such that
Ψ(Y ) is square-integrable,

E[Ψ(Y )X] = E[Ψ(Y )E[X|Y ]]

Matrices [28]

Definition 6. A real symmetrical matrix A is positive definite (respectively semi-definite) if
and only if for any non zero real column vector z, zTAz is positive (respectively non negative).

Proposition 4. A matrix is positive definite (resp. semi-definite) if and only if all of its
eigenvalues are positive (resp. non-negative).

Definition 7. The Cholesky decomposition of a symmetrical real positive-definite matrix is a
unique decomposition of the form A = LLT where L is a lower triangular matrix with real and
positive diagonal entries.

Proposition 5. If A is positive definite (resp. semi-definite), it can be written as A = LLT

with L a lower triangular matrix with a positive (resp. non negative) diagonal.

Remark: This is the unique (resp. non unique) Cholesky decomposition.

Proposition 6. If a matrix can be eigendecomposed and all its eigenvalues are non null then
it is invertible.

Copulas [14]

Copulas are used to study multi-hazard risks, ie random vectors X = (X1, . . . , Xn). Most of
the time, the marginal laws are known. Copulas are then used to get the joint law and model
the dependence between variables [19].

Definition 8. A d-dimensional copula is a cumulative distribution function C : [0, 1]d → [0, 1]
whose margins are uniform on [0, 1].

Theorem 1 (Sklar’s theorem). For any multivariate cumulative distribution function H with
marginals F1, . . . , Fd, there exists a d-dimensional copula C such that

H(x1 . . . , xd) = C(F1(x1), . . . , Fd(xd))

If F1, . . . , Fd are all continuous, then C is unique.

Definition 9. The independence copula is defined as

C⊥(u1, . . . , un) = u1 × · · · × un

Remark: We will note X⊥ a random vector which has copula C⊥.

Definition 10. For some correlation matrix R, the n-dimensional Gaussian copula with pa-
rameter R is defined as

CR(u) = ΦR(Φ
−1(u1), . . . ,Φ

−1(un)), u ∈ [0, 1]n
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2.2 Simulation process

We will now see how to simulate copula models. It all relies on proposition 1. Our goal is
to simulate X = (X1, . . . , Xn), which is characterized by its marginal distributions F1, . . . , Fn

and copula CRZ
, chosen to be the Gaussian copula. The procedure is the following:

1. Draw Z ∼ Nn(0, RZ)

2. Compute U = (Φ(Z1), . . . ,Φ(Zn))

3. Compute X = (F−1
1 (U1), . . . , F

−1
n (Un) = (F−1

1 (Φ(Z1)), . . . , F
−1
n (Φ(Zn)))

2.2.1 Illustration in dimension 2

We will look at the results in dimension n=2 before creating our final dataset. This will allow

us to give a visual illustration. First, we generate Z = (Z1, Z2) ∼ N2(0, R) with R =

[
1 ρ
ρ 1

]
and ρ = corr(Z1, Z2). Then, we compute X = (X1, X2) =

(
F−1
1 (Φ(Z1)), F

−1
2 (Φ(Z2))

)
.

The correlation between the Zi is

corr(Z1, Z2) = ρ =
E(Z1Z2)− E(Z1)E(Z2)√

V ar(Z1)V ar(Z2)
= E(Z1Z2)

because Zi ∼ N (0, 1), i = 1, 2. And the correlation between the Xi is

corr(X1, X2) =
E(X1X2)− E(X1)E(X2)√

V ar(X1)V ar(X2)

First case: X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) with µi ∈ R, σ2

i ∈ R+
∗ , i = 1, 2

Then
F−1
i (p) = µi + σiΦ

−1(p), p ∈ [0, 1], i = 1, 2

In order to find the correlation between the Xi, we need to compute:

E(X1X2) = E[F−1
1 (Φ(Z1))F

−1
2 (Φ(Z2))]

= E[(µ1 + σ1Φ
−1(Φ(Z1)))(µ2 + σ2Φ

−1(Φ(Z2)))]

= E[µ1µ2 + µ1σ2Z2 + µ2σ1Z1 + σ1σ2Z1Z2]

= µ1µ2 + µ1σ2E(Z2) + µ2σ1E(Z1) + σ1σ2E(Z1Z2)

= µ1µ2 + σ1σ2ρ

And so,
corr(X1, X2) =

µ1µ2 + σ1σ2ρ− µ1µ2

σ1σ2

= ρ (1)

Illustration: We will take X1 ∼ N (0, 2) and X2 ∼ N (3, 1).

As specified by step 1, we first draw

Z ∼ N2

([0
0

]
,

[
1 ρ
ρ 1

])
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of size 2 × 100, 000. We will follow the rest of the simulation process for three values of ρ:
−0.6, 0 and 0.6, so as to compare the results for different correlations. Figure 7 represents the
joint distribution of (Z1, Z2). We see that increasing the degree of correlation positively (resp.
negatively) between the marginal distributions concentrates the joint distribution around the
line y = x (resp. y = −x).

(a) ρ = −0.6 (b) ρ = 0 (c) ρ = 0.6

Figure 7: Step 1: joint distributions of (Z1, Z2)

We then apply Φ to Z1 and Z2 (step 2) and get their joint cumulative distribution, as
plotted in figure 8. As Zi ∼ N (0, 1), Φ(Zi) ∼ U([0, 1]), i = 1, 2, which is another formulation
of proposition 1. So we get two uniform random variables that are correlated. Once again, the
joint cumulative distribution concentrate around the line y = ±x when the correlation varies.

(a) ρ = −0.6 (b) ρ = 0 (c) ρ = 0.6

Figure 8: Step 2: joint cumulative distributions of (Z1, Z2)

We finally apply F−1
i to Φ(Zi) to obtain Xi, i = 1, 2 (step 3), as plotted in figure 9. We

have the same conclusion as before on the correlation. We are well-aware that we could have
directly generated a multivariate normal vector with the desired expected values and standard
deviations, but this way allowed us to give an easy example of how to follow the simulation
process.
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(a) ρ = −0.6 (b) ρ = 0 (c) ρ = 0.6

Figure 9: Step 3: joint distributions of (X1, X2)

We wrote down the values of the estimated Pearson correlation coefficients in table 2. As
computed in equation 1, we have corr(X1, X2) = corr(Z1, Z2) for the three values of ρ.

ρ -0.6 0 0.6
corr(Z1, Z2) -0.6018 -0.0009 0.6005
corr(X1, X2) -0.6018 -0.0009 0.6005

Table 2: corr(Z1, Z2) and corr(X1, X2)

Second case: X1 ∼ U([a, b]) and X2 ∼ N (µ, σ2) with (a, b) ∈ R2, a < b, µ ∈ R, σ2 ∈ R+
∗

The computation of corr(X1, X2) is not as direct as in the first case. As X1 has a uniform
distribution, we have

E(X1) =
a+ b

2

V ar(X1) =
(b− a)2

12
F−1
1 (p) = a+ p(b− a), p ∈ (0, 1)

We can compute

E(X1X2) = E[F−1
1 (Φ(Z1))F

−1
2 (Φ(Z2))]

= E[(a+ (b− a)Φ(Z1))(µ+ σZ2)]

= aµ+ aσE(Z2) + (b− a)µE[Φ(Z1)] + (b− a)σE[Φ(Z1)Z2]

= aµ+ (b− a)
µ

2
+ (b− a)σE[Φ(Z1)Z2]

=
a+ b

2
µ+ (b− a)σE[Φ(Z1)Z2]

E[Φ(Z1)] =
1
2

because Z1 ∼ N (0, 1) and so Φ(Z1) ∼ U([0, 1]) (consequence of proposition 1).
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So we have

corr(X1, X2) =
E(X1X2)− E(X1)E(X2)√

V ar(X1)V ar(X2)

=
a+b
2
µ+ (b− a)σE[Φ(Z1)Z2]− a+b

2
µ

b−a√
12
σ

= 2
√
3E[Φ(Z1)Z2]

= 2
√
3E[Φ(Z1)E[Z2|Z1]]

because of proposition 3, with Φ(Z1) square-integrable.
And E[Z2|Z1] = ρZ1, because

Z2|Z1 = z1 ∼ N (ρz1, 1− ρ2) (2)

Proof.

fZ2|Z1=z1(z1, z2) =
fZ1,Z2(z1, z2)

fZ1(z1)

=

1

2π
√

1−ρ2
exp(− 1

2(1−ρ)2
(z21 − 2ρz1z2 + z22))

1√
2π
exp(− z21

2
)

=
1√

2π(1− ρ2)
exp(− 1

2(1− ρ2)
(z21 − 2ρz1z2 + z22 − (1− ρ2)z21))

=
1√

2π(1− ρ2)
exp(− 1

2(1− ρ2)
(z22 − 2ρz1z2 + (ρz1)

2))

=
1√

2π(1− ρ2)
exp(−(z2 − ρz1)

2

2(1− ρ2)
)

By identification,

E[Z2|Z1 = z1] = ρz1

V ar(Z2|Z1 = z1) = 1− ρ2

So we have

corr(X1, X2) = 2
√
3E[Φ(Z1)ρZ1]

= 2
√
3ρE[Φ(Z1)Z1]

= 2
√
3ρ

∫
R
zΦ(z)ϕ(z) dz

We will do an integration by parts:∫ b

a

u′(x)v(x) dx = [u(x)v(x)]ba −
∫ b

a

u(x)v′(x) dx

We can set

u′(x) = xϕ(x) = x
e−x2/2

√
2π

v(x) = Φ(x)
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So

u(x) = −ϕ(x) = −e−x2/2

√
2π

v′(x) = Φ′(x) = ϕ(x)

So we have

corr(X1, X2) = 2
√
3ρ
[
[−ϕ(z)Φ(z)]R −

∫
R
−ϕ2(z) dz

]
limz→−∞ Φ(z) = 0 and limz→+∞ Φ(z) = 1 because Φ is a cumulative distribution function
ϕ(z) = e−z2/2

√
2π

so limz→−∞ ϕ(z) = limz→+∞ ϕ(z) = 0

So we have [−ϕ(z)Φ(z)]R = 0 and ∫
R
ϕ2(z) dz =

∫
R

e−z2

2π
dz

=

∫
R

e−y2/2

2π
√
2
dy

=
1

2
√
π

because
∫

R
e−y2/2
√
2π

dy = 1, as it is the integral on the entire support (R) of a probability density
function (of the standard normal distribution). In the end,

corr(X1, X2) = 2
√
3ρ

1

2
√
π

corr(X1, X2) =

√
3

π
ρ (3)

To conclude, as
√

3
π

≃ 0.997, we almost keep the same correlation between X1 and X2 as
between Z1 and Z2, in the case where X1 ∼ U([a, b]) and X2 ∼ N (µ, σ2).

Illustration: We will take X1 ∼ U([0, 1]) and X2 ∼ N (0, 1). The joint distributions are plotted in
figure 10. Like in the previous case, increasing the degree of correlation positively (respectively
negatively) between the marginal distributions shifts the joint distribution on the line y = x
(respectively y = −x).

(a) ρ = −0.6 (b) ρ = 0 (c) ρ = 0.6

Figure 10: Joint distributions of (X1, X2) =
(
F−1
1 (Φ(Z1)), F

−1
2 (Φ(Z2))

)
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We computed the estimated Pearson correlation coefficients between the simulated Z1 and
Z2, and X1 and X2 in table 3. As found with equation 3, corr(X1, X2) =

√
3
π
ρ for the three

values of ρ.

ρ -0.6 0 0.6
corr(Z1, Z2) -0.5983 -0.0031 0.6006√

3/πρ -0.586 0 0.586
corr(X1, X2) -0.5838 -0.0029 0.5874

Table 3: corr(X1, X2)

Third case: X1 ∼ B(p) and X2 ∼ N (µ, σ2), p ∈ (0, 1), µ ∈ R, σ2 ∈ R+
∗

As F1 is not continuous, we are not under the assumptions of Sklar’s theorem (theorem 1), so
the copula C might not be unique.

We will place ourselves in the second case and simulate X1 ∼ U([0, 1]) and X2 ∼ N (µ, σ2)
with µ ∈ R, σ2 ∈ R+

∗ , then transform X1 into a Bernoulli random variable using the function

h :[0, 1] → {0, 1}

u 7→ h(u) =

{
0 if u < τ
1 if u ≥ τ

= 1u≥τ

We then have h(X1) ∼ B(p).

Proof.
P(h(X1) = 1) = P(1X1≥τ = 1) = P(X1 ≥ τ) = 1− F1(τ) = 1− τ

P(h(X1) = 0) = P(1X1≥τ = 0) = 1− P(1X1≥τ = 1) = τ

By identification, h(X1) ∼ B(p) with p = 1− τ

As the cumulative distribution function of a Bernoulli random variable is not invertible, we
cannot go back to the generative copula from the set (h(X1), X2). In a sense, we have broken
the correlation structure. But our transformation h allows the computation of the correlation
as a function of ρ:

corr(h(X1), X2) =
E[h(X1)X2]− E[h(X1)]E[X2]√

V ar(h(X1))V ar(X2)

with

E[h(X1)X2] = E[h(X1)F
−1
2 (Φ(Z2))]

= E[h(X1)(µ+ σZ2)]

= µE[h(X1)] + σE[h(X1)Z2]

23



and

E[h(X1)Z2] = E[1X1≥τZ2]

= E[1F−1
1 (Φ(Z1))≥τZ2]

= E[1Z1≥Φ−1(F1(τ))Z2]

= E[1Z1≥Φ−1(τ)Z2]

= E[1Z1≥Φ−1(τ)E[Z2|Z1]] (proposition 3)
= E[1Z1≥Φ−1(τ)ρZ1] (equation 2)

= ρ

∫
R

1z≥Φ−1(τ)zϕ(z) dz

= ρ

∫ +∞

Φ−1(τ)

zϕ(z) dz

= ρ[−ϕ(z)]+∞
Φ−1(τ)

= ρϕ(Φ−1(τ))

So

corr(h(X1), X2) =
µE[h(X1)] + σρϕ(Φ−1(τ))− E[h(X1)]µ√

τ(1− τ)σ2

=
ρϕ(Φ−1(τ))√

τ(1− τ)

=
ρ 1√

2π
e−

(Φ−1(τ))2

2√
τ(1− τ)

So we have

corr(h(X1), X2) =
ρe−

(Φ−1(τ))2

2√
τ(1− τ)2π

(4)

As the correlation coefficient is in [−, 1],

min
ρ∈(−1,1)

corr(h(X1), X2) = min
ρ∈(−1,1)

ρe−
(Φ−1(τ))2

2√
τ(1− τ)2π

= − e−
(Φ−1(τ))2

2√
τ(1− τ)2π

max
ρ∈(−1,1)

corr(h(X1), X2) = max
ρ∈(−1,1)

ρe−
(Φ−1(τ))2

2√
τ(1− τ)2π

=
e−

(Φ−1(τ))2

2√
τ(1− τ)2π

So corr(h(X1), X2) has a minimal and maximal value:

corr(h(X1), X2) ∈
[
− e−

(Φ−1(τ))2

2√
τ(1− τ)2π

,
e−

(Φ−1(τ))2

2√
τ(1− τ)2π

]

Figure 11 represents e−
(Φ−1(τ))2

2√
τ(1−τ)2π

for τ ∈ (0, 1).

max
τ∈(0,1)

(
e−

(Φ−1(τ))2

2√
τ(1− τ)2π

) = 0.798 for τ =
1

2

So for all τ ∈ (0, 1), |corr(h(X1), X2)| ≤ 0.798.
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Figure 11: corr(h(X1), X2) for τ ∈ (0, 1), with a maximum of 0.798 for τ = 0.5

Illustration: We will take X1 ∼ B(0.8) and X2 ∼ N (2, 0.8).
Then Φ−1(τ) = Φ−1(1− 0.8) = Φ−1(0.2) ≃ −0.842 (numeric computation) and

e−
(Φ−1(τ))2

2√
τ(1− τ)2π

=
e−

(−0.842)2

2√
(1− 0.8)× 0.8× 2π

≃ 0.759

So
corr(h(X1), X2) = 0.759ρ ∈ (−0.759, 0.759)

The joint distributions are plotted in figure 12. Like in the previous cases, increasing the degree
of correlation positively (respectively negatively) between the marginal distributions shifts the
joint distribution on the line y = x (respectively y = −x).

(a) ρ = −0.6 (b) ρ = 0 (c) ρ = 0.6

Figure 12: Joint distributions of (h(X1), X2)

We computed the estimated Pearson correlation coefficients between the simulated h(X1)

and X2 in table 4. We can see that corr(h(X1), X2) =
ρe−

(Φ−1(τ))2

2√
τ(1−τ)2π

for the three values of ρ, as

we computed in equation 4.

ρ -0.6 0 0.6
ρe−

(Φ−1(τ))2

2√
τ(1−τ)2π

-0.455 -0.001 0.455

corr(h(X1), X2) -0.454 0.000 0.455

Table 4: corr(h(X1), X2)
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2.2.2 Illustration in dimension n: creating the dataset

We can now create the simulated dataset. For simplicity reasons, we will suppose that we
are in the setting of section 1.4.1, with two binary protected variables and a binary outcome.
We have

• a set of non-protected variables X = {X(i)}i=1,...n−3, n ∈ N with X(i) ∼ N (µi, σi), µi ∈ R,
σi ∈ R+

∗

• two protected variables A ∼ B(pa), pa ∈ (0, 1) and B ∼ B(pb), pb ∈ (0, 1)

• the output variable Y ∼ B(py), py ∈ (0, 1)

• Z ∼ Nn(0, RZ). For (i, j) ∈ J1, nK2,

RZ,ij =

{
1 if i = j
corr(Zi, Zj) if i ̸= j

with corr(X(i), X(j)) = corr(Zi, Zj), (i, j) ∈ J1, n− 3K (equation 1)

corr(X(i), A) = e−
(Φ−1(1−pa))2

2√
pa(1−pa)2π

corr(Zi, Zn−2), i ∈ J1, n− 3K (equation 3)

corr(X(i), B) = e−
(Φ−1(1−pb))

2

2√
pb(1−pb)2π

corr(Zi, Zn−1), i ∈ J1, n− 3K (equation 3)

corr(X(i), Y ) = e−
(Φ−1(1−py))2

2√
py(1−py)2π

corr(Zi, Zn), i ∈ J1, n− 3K (equation 3)

For the choice of RZ , there are constraints. It must be a square matrix and:

• symmetrical, because corr(Zi, Zj) = corr(Zj, Zi)

• with a unity diagonal, because corr(Zi, Zi) = 1

• all values must be in [−1, 1] by definition of the correlation

• positive semi-definite

• invertible, otherwise the distribution is degenerate and does not have a density, as we saw
in definition 3

In order to have an invertible and positive semi-definite matrix, it needs to be positive definite.
Indeed, proposition 6 gives the equivalence between an invertible matrix and its eigenvalues
being non null, and proposition 4 gives the equivalence between a positive definite (respectively
semi-definite) matrix and its eigenvalues being positive (respectively positive or null).
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Using proposition 5 (Cholesky decomposition), we will compute RZ = LLT , choosing L as a
lower triangular matrix with a positive diagonal. That way we will have a square symmetrical,
positive definite (so positive semi-definite and invertible) matrix.

RZ =

L11 0 0 . . .
L21 L22 0 . . .
... . . .

×

L11 L21 . . .
0 L22 . . .
... 0

. . .


=

 L2
11 L11L21 . . .

L11L21 L2
21 + L2

22
... . . .


We have

RZ,ii =
i∑

k=1

L2
ik

RZ,ij = RZ,ji =
i∑

k=1

LikLjk, i > j

As we want the diagonal of RZ to be unity, we need

RZ,ii = 1 ie
i∑

k=1

L2
ik = 1

ie Lii =

√√√√1−
i−1∑
k=1

L2
ik (the diagonal has to be positive)

The computation of the Lii implies constraints on the values of the Lij:

∀i = 1, . . . , n, 1−
i−1∑
k=1

L2
ik > 0 ie

i−1∑
k=1

L2
ik < 1

Finally, to set RZ , we set values for the Lij, i > j, check that the constraint above is verified,
compute the Lii accordingly and then RZ . We also need to check that we have RZ,ij ∈ [−1, 1].

Finally, the procedure is:

• set the matrix L with the constraints mentioned above

• compute RZ = LLT

• generate Z ∼ Nn(0, RZ)

• set the parameters of the laws of

X(i) ∼ N (µi, σ
2
i )

A ∼ B(pa)
B ∼ B(pb)
Y ∼ B(py)

• compute
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X = (F−1
1 (Φ(Z1)), . . . , F

−1
n−3(Φ(Zn−3)))

A = ha(F
−1
n−3(Φ(Zn−3)))

B = hb(F
−1
n−2(Φ(Zn−2)))

Y = hy(F
−1
n (Φ(Zn)))

Reminder: ha(u) = 1u≥1−pa

Final dataset We set n = 7 and generated 100 datasets with the same parameters:

X(1) ∼ N (2, 0.6)

X(2) ∼ N (0.2, 0.3)

X(3) ∼ N (−0.3, 2)

X(4) ∼ N (0.7, 0.4)

A ∼ B(0.3)
B ∼ B(0.9)
Y ∼ B(0.2)

RX,A,B,Y =



1 0.395 −0.018 0.297 −0.230 0.350 0.139
0.395 1 −0.501 0.103 0.226 0.111 0.209
−0.018 −0.501 1 0.294 0.076 0.294 −0.066
0.297 0.103 0.294 1 −0.227 0.348 −0.208
−0.230 0.226 0.076 −0.227 1 0.043 0.105
0.350 0.111 0.294 0.348 0.043 1 0.039
0.139 0.209 −0.066 −0.208 0.105 0.039 1


The reason for that is that we want to take into account the instability of results. Insta-

bility can come from the generative process: not all datasets will have the exact same variable
distribution because of the limited sample size (100,00 lines here). It can also be caused later
on by the train test split or sampling which depend strongly on the execution. Generating 100
datasets allows us to average and get confidence intervals on metrics and results. In reality,
we often do not have access to the data generator so, to construct confidence intervals, we
use bootstraping, which estimates the sampling distribution of statistics such as sample mean
thanks to random sampling with replacement. Figure 13 shows the head of one of the datasets.

Figure 13: Head of a simulated dataset

As mentioned previously, we will take advantage of having access to the data generation
process. It means we can produce confidence intervals for every value: the mean of a variable,
the number of observations of a certain class, the weights of the regression etc. This is the
reason why we generated 100 datasets: we will look at the average and standard deviation over
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these datasets to produce the confidence interval of the value we are looking at. We gave a
reminder on confidence intervals in appendix A.

2.3 Descriptive statistics

Before heading into applying methods, we need to prepare and explore our data. As we have
built our datasets ourselves, we already know a lot about them.

2.3.1 Variable identification and univariate analysis

The explanatory variables are the X(i), i = 1, . . . , 4, A and B, and the target variable is Y .
As expected, we have 100,000 non-null values for each variable. The X(i) are continuous, and
A, B and Y are categorical, taking values in {0, 1}.

X By construction, the X(i) have means and standard derivations as defined in section 2.2.2,
and it is verified by the computation of the sample means and standard derivations in table 5.
We can notice that the confidence intervals are of size 0. This means that over our 100 datasets,
we have a probability of 95% that they all have the means and standard deviations as defined
in data generation process.

i 1 2 3 4
mean 2.00± 0.00 0.20± 0.00 −0.30± 0.00 0.70± 0.00
std 0.60± 0.00 0.30± 0.00 2.00± 0.00 0.40± 0.00

Table 5: Means and standard derivations of the X(i)

A We computed it to follow a Bernoulli distribution of parameter pa = 0.3, so we find as
planned that

mean(A) = 0.30± 0.00 = pa

std(A) = 0.46± 0.00 =
√
0.3(1− 0.3) =

√
pa(1− pa)

Table 6 gives the number of observations for each value of A. By construction, as A ∼ B(0.3),
there is an imbalance: about 30% individuals have A = 1 and 70% individuals have A = 0. So
the group imbalance ratio is

IRA =
Number of majority observations
Number of minority observations

= 2.33± 0.00

meaning there are 2.33 times more observations of A = 0 than A = 1.

A Observations
0 70, 002.22± 290.73
1 29, 997.78± 290.73

Table 6: Number of observations by value of A
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B We computed it to follow a Bernoulli distribution of parameter pb = 0.9, so we find as
planned that

mean(B) = 0.90± 0.00 = pa

std(B) = 0.30± 0.00 =
√
0.9(1− 0.9) =

√
pb(1− pb)

Table 7 gives the number of observations for each value of B. By construction, as B ∼ B(0.9),
there is an imbalance: about 90% individuals have B = 1 and 10% individuals have B = 0. So
the group imbalance ratio is

IRA = 8.99± 0.02

meaning there are almost 9 times more observations of B = 0 than B = 1.

B Observations
0 89, 980.70± 207.11
1 10, 019.30± 207.11

Table 7: Number of observations by value of B

Y We computed it to follow a Bernoulli distribution of parameter py = 0.2, so as expected

mean(Y) = 0.20± 0.00 = py

std(A) = 0.40± 0.00 =
√
0.2(1− 0.2) =

√
py(1− py)

This results in an imbalance too: table 8 gives the number of observations for each value of Y ,
and the imbalance ratio is

IRY = 4.00± 0.01

meaning there are 4 times more observations of Y = 0 than Y = 1.

Y Observations
0 80, 010.49± 262.28
1 19, 989.51± 262.28

Table 8: Number of observations by value of Y

Going back on imbalance In real life, imbalance can be explained either by the way the
data was collected or by the natural domination of one class. The collection of data can lead to
an imbalance if the sampling is biased or if mistakes are made, for examples writing down the
wrong labels on observations. In insurance, there are sampling biases: conclusions about risks
only concern individuals who have been accepted at the underwriting stage. As underwriters
aim at selecting ‘good’ risks, most of the time, the insurer’s portfolio will be very specific and
predictions on claims frequency, for example, cannot be generalized to a different population.

2.3.2 Multivariate analysis

An important part of data exploration consists in studying the relationships between vari-
ables. To do so, we will analyze how they are correlated to each other. As a reminder,
correlation is how linearly related two variables are, and is only the first order approximation
of dependence, as seen previously.
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Correlations with Y A heatmap of the correlations can help understand which variables
are correlated with each other. Figure 14 shows the heatmap of correlations. The strongest
positive correlations are colored in bright red and the strongest negative correlations are colored
in bright blue. The strongest correlations to Y in absolute value are with X(4), X(2), X(1), A,
X(2), X(3) and then B. This is coherent with the theoretical values of the correlation matrix
RX,A,B,Y in section 2.2.2.

Figure 14: Heatmap of correlations

Correlations with A We saw in the previous paragraph that A has the third strongest
absolute value correlation to Y . It is also strongly correlated to the X(i), as we see in figure 14.
We noted in the previous section that there are imbalances in the number of observations for
both A and Y , and we see in table 9 that among group A there is an imbalance in output values
too. If we compute the imbalance ratio for the output, we get

A=0: IRY = 4.86± 0.01

A=1: IRY = 2.73± 0.01

meaning that within group A = 0, there are 4.86 times more observations of Y = 0 than Y = 1
and within group A = 1, there are 2.73 times more observations of Y = 0 than Y = 1. In
general there are a lot more Y = 0 outputs than Y = 1 ones, and when we zoom in on protected
groups, the imbalance ratio is larger for group A = 0 than for A = 1, meaning that the former
has a larger proportion of Y = 0 outputs than the latter.

Y=0 Y=1
A=0 58, 048.36± 33.08 11, 953.86± 21.76
A=1 21, 962.13± 26.37 8, 035.65± 15.49

Table 9: Number of observations by values of A and Y

Correlations with B We saw that B has the weakest absolute value correlation to Y , but
it is still strongly correlated to the X(i). Within groups, as for A, there can be imbalances, as
we see in table 10. The imbalance ratios by group are

B=0: IRY = 5.53± 0.02

B=1: IRY = 3.88± 0.01

meaning that within group B = 0, there are 5.53 times more observations of Y = 0 than Y = 1
and within group B = 1, there are 3.88 times more observations of Y = 0 than Y = 1. The
imbalance ratio is larger for group B = 0 than for B = 1.
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Y=0 Y=1
B=0 8, 484.30± 19.82 1, 535.00± 9.06
B=1 71, 526.19± 29.28 18, 454.51± 24.25

Table 10: Number of observations by values of B and Y

Correlations between the X(i) By construction the X(i) are related to each other, through
the correlation matrix. Figure 15 gives the pairwise relationships between the X(i), and the
diagonal is their marginal distribution. We observe that X(1) is positively correlated with X(2)

and X(3), X(2) is negatively correlated with X(3), and X(3) is negatively correlated with X(4).
Correlations between other variables are less obvious.

Figure 15: Pairplots of the X(i)

2.3.3 Outliers

As the X(i) were computed to follow normal distributions, and A, B and Y to take values
in {0, 1}, we do not expect to have any outliers. This is verified in our datasets: there are no
unexpected values for the X(i) and we have values of A, B and Y in {0, 1}.
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3 Discrimination mitigation applied to the simulated data
The goal of the section is to compare different pre-processing steps and see how they influence

our fairness metrics. After this, we will apply a logistic regression model to the simulated
explanatory variables predict the variable of interest. Appendix B gives a reminder on the
logistic regression.

The reason why we chose the logistic regression is that it is interpretable, which is a major
issue with Machine Learning, and an important characteristic to simplify our study on fairness.
It also presents other advantages, such as its simplicity with a low number of parameters. The
main drawback is that a lot of preprocessing must be done: we need to select variables that
are not strongly correlated with each other, and to transform most continuous variables into
categorical variables, or only their general effect will be captured by the coefficients. For this
simulated dataset, we will keep all variables as there are only 5 of then, and they are very
simple.

3.1 Regression model with no pre-processing step

In this section, we will simply predict the outcome with all the variables. We standardized
the variables to have mean zero and standard deviation 1, then randomly separated the dataset
into a train (80%) and a test dataset (20%), and applied a logistic regression model.

Table 11 gives confidence intervals of the weights of this logistic regression, their standard
errors and the associated p-values. All variables have p-values below 0.05, so they are all
significant to the model.

Variable Coefficient Standard Error P-value
Intercept −1.82± .01 .05± .00 .00± .00

X1 .55± .00 .02± .00 .00± .00
X2 2.81± .01 .05± .00 .00± .00
X3 .25± .00 .01± .00 .00± .00
X4 −2.53± .01 .03± .00 .00± .00
A −0.17± .01 .03± .00 .00± .00
B 0.41± .01 .04± .00 .00± .00

Table 11: Coefficients of the model using all variables

Performance evaluation

• We have 81.05% correct classifications on average. The accuracy acceptability depends
on the business context. As we saw previously, if mistakes have a high cost then it might
not be sufficient.
If there is a large class imbalance, accuracy is not the best metric as it can be very high
while the model only fits the majority population. As a reminder, the output imbalance
ratio is IRY = 4.00. So we cannot rely solely on accuracy to evaluate our model.

• As a reminder, the ROC (Receiver Operating Characteristic) curve plots the true positive
rate against the false positive rate for varying classification thresholds. A random classifier
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will exhibit a linear ROC curve as the one plotted in a dashed orange line (figure 16).
Above that line, the model performs better than the random classifier, and below, worse.
The perfect classifier has a ROC curve that is confined to the (0,1) point. Here, our model
performs a lot better than the random classifier: the AUC (Area Under the ROC Curve)
is of 0.7568.

(%) Global
Accuracy 81.05± 0.05

Table 12: Global metrics (all variables)

Figure 16: ROC curve for the model with all variables

Fairness evaluation We will compare fairness under all three definitions, first comparing
the metrics between values of protected groups A and B (table 13), then between subgroups of
combinations of A and B (table 14).

• Statistical parity requires the same acceptance rates for all protected groups.

– It is a lot higher for group A = 0 than for group A = 1, by 8.26 points. So group
A = 1 is disadvantaged by the model under this definition.

– It is higher for group B = 0 than for group B = 1, by 3.47 points. So group B = 1
is disadvantaged by the model under this definition.

– Looking at subgroups, the most advantaged subgroup is for (A = 0, B = 0) and
the most disadvantaged is for (A = 1, B = 1). This shows that looking at com-
binations of protected variables reveals that groups with a certain combination of
characteristics are even more disadvantaged.

• Equal opportunity requires the same true positive rates for all protected groups.

– It is higher for group A = 0, so group A = 1 is disadvantaged by the model under
this definition.

– It is higher for group B = 0, although not by much, so group B = 1 is disadvantaged
by the model under this definition.

– It is highest for subgroup (A = 0, B = 0) and lowest for group (A = 1, B = 1).

• Equalized odds requires the same true and false positive rates for both protected groups.

– The false positive rate is higher for group A = 0 than group A = 1. Group A = 1
has lower true and false positive rates, so it is disadvantaged by the model under
this definition.
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– The false positive rate is higher for group B = 0 than B = 1. Group B = 1 has
lower true and false positive rates, so it is disadvantaged by the model under this
definition.

– The false positive rate is highest for subgroup (A = 0, B = 0) and lowest for (A =
1, B = 1).

To conclude, the model is unfair and disadvantages groups A = 1 and B = 1 under all three
fairness definitions, and the most disadvantaged subgroup is (A = 1, B = 1).

(%) Global A=0 A=1 Difference B=0 B=1 Difference
AR 94.13± .05 96.60± .04 88.34± .10 8.26± .10 97.25± .09 93.78± .05 3.47± .10
TPR 96.98± .04 98.26± .03 93.60± .09 4.67± .09 98.62± .06 96.79± .04 1.83± .07
FPR 82.69± .15 88.55± .15 73.95± .24 14.60± .26 89.72± .39 82.11± .16 7.62± .42

Table 13: Fairness metrics globally and by protected group (all variables)

(%) A=0 A=1
B=0 B=1 B=0 B=1

AR 98.47± .07 96.39± .04 93.72± .22 87.92± .12
TPR 99.21± .05 98.15± .03 96.58± .19 93.41± .09
FPR 93.65± .36 88.08± .16 83.15± .66 73.34± .26

Table 14: Fairness metrics by protected subgroups (all variables)

3.2 Removing protected variables to avoid direct discrimination

When sensitive variables are omitted, models can still learn stereotypes, because sensitive
information is embedded in datasets even if it is not intentional. Leaving out sensitive variables
forces the correlated variables to take on a greater importance. This is the omitted variable
bias [51].

Removing sensitive attributes is problematic, because it becomes impossible to check for
bias and discrimination. We cannot see if the most important variables for prediction are
strongly correlated with a protected attribute or compute metrics. This is a problem related to
data regulations: as we saw in section 1.2.1, the GDPR requires minimal data collection, but
more data is needed to prove discrimination.

We will preprocess our data by removing the sensitive attributes, A and B, then predict the
outcome with a logistic regression model. Table 15 gives the predicted weights of this logistic
regression. As A and B are no longer used as explanatory variables, the weights of regression
have changed. For example, the biggest change is for X(3), which had a coefficient of 0.25 and
now has a coefficient of 2.46. Remembering the correlation matrix, X(3) is correlated with A
and B with relatively high Pearson correlation coefficients: -0.23 and 0.35 respectively. This
can indicate that A and B will still indirectly play a part in the model predictions.
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With all variables
Variable Coefficient Standard Error P-value
Intercept −1.82± .01 .05± .00 .00± .00

X1 .55± .00 .02± .00 .00± .00
X2 2.81± .01 .05± .00 .00± .00
X3 .25± .00 .01± .00 .00± .00
X4 −2.53± .01 .03± .00 .00± .00
A −0.17± .01 .03± .00 .00± .00
B .41± .01 .04± .00 .00± .00

Without protected variables
Variable Coefficient Standard Error P-value
Intercept −1.76± .01 .05± .00 .00± .00

X1 .65± .00 .02± .00 .00± .00
X2 2.68± .01 .05± .00 .00± .00
X3 2.46± .00 .01± .00 .00± .00
X4 −2.41± .01 .03± .00 .00± .00

Table 15: Weights of the logistic regression

Performance evaluation

• As we can see in table 17, the accuracy has only decreased by 0.01 on average, which is
negligible, especially considering the width of the confidence interval.

• Looking at the ROC curve in figure 17, the model still performs quite well, and the AUC
has decreased from 0.7568 to 0.7466 compared to the model using all variables.

(%) With all variables Without protected variables
Accuracy 81.05± .05 81.04± .05

Table 16: Global metrics

Figure 17: ROC curve for the model without protected variables
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Fairness evaluation

• Acceptance rate

– The global acceptance rate has slightly increased.

– For groups A, the gap between acceptance rates has increased by more than one
point. This was expected, as X(3), strongly correlated with A, has taken on a great
importance in the model prediction.

– For groups B, the difference in acceptance rates has decreased.

– Looking at protected subgroups, the most advantaged subgroups are the same as
in the model with all variables: the most advantaged subgroup is (A = 0, B = 0)
and the most disadvantaged is (A = 1, B = 1). We now have a lower gap between
acceptance rates for subgroups (A = 0, B = 0) and (A = 0, B = 1) and for (A =
1, B = 0) and (A = 1, B = 1), which is coherent as acceptance rates between groups
B are closer than previously.

• For true and false positive rates, we have the same conclusions as for the acceptance rates.

For groups A, the gaps between fairness metrics are wider when the protected variables are not
used in the model, but for group B, they are smaller, although this phenomenon comes from
the structure of the correlation matrix. The same groups remain disadvantaged.

To conclude, the performance metrics have not deteriorated too much compared to when
using all variables. The fairness metrics are worse for groups A but better when looking at
groups B. To conclude, simply ignoring the protected variables is not a solution.

With all variables
(%) Global A=0 A=1 Difference B=0 B=1 Difference
AR 94.13± .05 96.60± .04 88.34± .10 8.26± .10 97.25± .09 93.78± .05 3.47± .10
TPR 96.98± .04 98.26± .03 93.60± .09 4.67± .09 98.62± .06 96.79± .04 1.83± .07
FPR 82.69± .15 88.55± .15 73.95± .24 14.60± .26 89.72± .39 82.11± .16 7.62± .42

Without protected variables
(%) Global A=0 A=1 Difference B=0 B=1 Difference
AR 94.29± .05 97.05± .04 87.55± .10 9.50± .09 95.38± .10 94.07± .055 1.31± .09
TPR 97.02± .03 98.51± .03 93.07± .09 5.44± .08 97.41± .08 96.97± .04 .44± .08
FPR 82.92± .12 89.94± .13 72.53± .23 17.41± .26 84.15± .46 82.82± .13 1.33± .48

Table 17: Fairness metrics
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With all variables

(%) A=0 A=1
B=0 B=1 B=0 B=1

AR 98.47± .07 96.39± .04 93.72± .22 87.92± .12
TPR 99.21± .05 98.15± .03 96.58± .19 93.41± .09
FPR 93.65± .36 88.08± .16 83.15± .66 73.34± .26

Without protected variables

(%) A=0 A=1
B=0 B=1 B=0 B=1

AR 97.43± .08 97.00± .04 88.94± .27 87.43± .10
TPR 98.56± .06 98.50± .03 93.41± .25 93.04± .09
FPR 90.01± .44 89.92± .13 72.61± .87 72.53± .24

Table 18: Fairness metrics by protected subgroups

3.3 Transforming the non-protected variables to mitigate indirect dis-
crimination

3.3.1 Theory

The idea Focusing on the definition of fairness as statistical parity, we can view it as an
independence condition. Statistical parity requires Ŷ ⊥⊥ A,B. Since we do not want A or B
to impact the predicted output, the goal is firstly not to use them as explanatory variables
and secondly to have explanatory variables that are independent of them. Dealing with inde-
pendence is a complex problem, which is why we will tackle it on a linear level only - with
correlation. We will try to obtain transformations of the variables X(i) uncorrelated with A
and B, and we will then use them as inputs of a logistic regression model to predict Y .

Drawing inspiration from the Gram-Schmidt process (a reminder is given in appendix C),
the idea is to view the variables as vectors in a n-dimensional space (n being the number of
variables in our dataset) and the covariance between them as a scalar product. Let us set the
theoretical framework.

Definition 11. An inner product is a map

⟨·, ·⟩ : V × V → R

with V a real vector space, that is symmetric, bilinear and positive-definite.
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Proposition 7. Set X and Y real random variables with zero mean and finite variance. Their
covariance

⟨X, Y ⟩ = cov(X, Y )

is an inner product (on the space of random variables with zero mean and finite variance).

Proof. Set X, Y, Z real random variables with zero mean and finite variance and (a, b) ∈ R2.
Then cov(X, Y ) = E[XY ]−E[X]E[Y ] = E[XY ]. We will check the three properties of the inner
product:

• symmetry: E[XY ] = E[Y X]

• bilinearity: E[(aX + bY )Z] = aE[XZ] + bE[Y Z]

• positive-definiteness: E[XX] = E[X2] ≥ 0

and E[X2] = 0 ⇐⇒ V ar(X) + (E[X])2 = 0 ⇐⇒
{

V ar(X) = 0
E[X] = 0

⇐⇒ X = 0 a.s.

Definition 12. Two vectors are orthogonal if their inner product is zero.

As covariance is an inner product on the space of random variables with zero mean and
finite variance, two random variables of this space are orthogonal if their covariance is zero ie
if their correlation is zero, because as we saw in definition 5,

corr(X, Y ) =
cov(X, Y )√

V ar(X)V ar(Y )

and their variance is finite. So we have an interpretation of random variables of this space as
vectors with an inner product.

Going back to the initial goal, we wanted a transformation of our variables X(i) that is
uncorrelated to both A and B. With the framework we have set, it means that the transformed
variables will be orthogonal to A and to B. Suppose the (non-orthogonal) basis of our vector
space is the linearly independent set B = {u1, . . . , un} such that any vector Z of the space -
which corresponds to the characteristic of one individual ie row of the dataset - can be uniquely
written as a linear combination of the vectors of the basis:

Z =
n∑

i=1

xiui with X =

x1

. . .
xn


Our goal is to find a change of basis that gives us the new basis B′ = {v1, . . . , vn}. We will

then be able to write

Z =
n∑

j=1

x′
jvj with X ′ =

x′
1

. . .
x′
n


A = (ai,j)i,j is called the transition matrix and its jth row is formed by the coordinates of vj:

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . .
. . .
an,1 . . . an,n
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Then, the change-of-basis formula gives in matrix form

X ′ = AX

=


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . .
. . .
an,1 . . . an,n



x1

x2

. . .
xn



=


a1,1x1 + a1,2x2 + · · ·+ a1,nxn

a2,1x1 + a2,2x2 + · · ·+ a2,nxn

. . .
an,1x1 + an,2x2 + · · ·+ an,nxn


So

x′
i =

n∑
j=1

ai,jxj

Our goal is to have a new basis in which the non-sensitive vectors are orthogonal to the
sensitive ones. For this reason, we impose the following constraints for the construction of the
new basis:

1. we do not want to transform the sensitive variables, so the first s vectors of the new basis
will remain the same as in the old basis: x1 = x′

1, . . . , xs = x′
s

xi = x′
i ⇔ xi =

n∑
j=1

ai,jxj

⇔
{

ai,i = 1
ai,j = 0 for j ̸= i

As a result,

A =


Is

0 . . . 0
...

...
0 . . . 0

as+1,1 . . . as+1,n
...

...
an,1 . . . an,n


with Is the identity matrix of size s.

2. the new non-sensitive vectors will be orthogonal to the sensitive vectors: ∀j ∈ J1, sK, ∀k ∈
Js+ 1, nK, ⟨vj, vk⟩ = 0
This is equivalent to: for all k ∈ Js + 1, nK a system of s equations with n unknown
variables (the a.,k): 

⟨v1, vk⟩ = 0
. . .

⟨vs, vk⟩ = 0
(5)
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The rows of A are the vj, so vj =

{
uj if j ∈ J1, sK∑n

i=1 aj,iui if j ∈ Js+ 1, nK

(5) ⇔


⟨u1,

∑n
j=1 ak,juj⟩ = 0

. . .
⟨us,

∑n
j=1 ak,juj⟩ = 0

⇔


∑n

j=1 ak,j⟨u1, uj⟩ = 0

. . .∑n
j=1 ak,j⟨us, uj⟩ = 0

For each row k of A, we are looking for the values of the ak,1, . . . , ak,n. The previous
constraints give for each row a system of s equations, but we have n unknown variables, so the
system is underdetermined, with an infinite number of solutions. To simplify, we can set

∀j ∈ {s+ 1, . . . , k − 1, k + 1, . . . , n}, ak,j = 0 ie vk =
s∑

j=1

ak,juj + ak,kuk

Meaning that each non-sensitive vector of the new basis is written as a linear combination of
itself and of the sensitive vectors of the old basis. This gives a transition matrix of the shape

A =



Is

0 . . . 0
...

...
0 . . . 0

as+1,1 . . . as+1,s as+1,s+1 0 0 . . . 0
as+2,1 . . . as+2,s 0 as+2,s+2 0 . . . 0

...
an,1 . . . an,s 0 0 . . . 0 an,s+1


We now have for each row, a system of s linear equations and s + 1 unknown variables.

We need one more constraints in order to have a unique solution. An idea is to minimize the
distance between the old and the new basis (non-sensitive) vectors:

min
ak,1,...,ak,n

d(uk, vk)

As the distance is positive, it has a lower bound, so this problem has a solution. We have
defined the inner product as the covariance between random variables with zero mean and
finite variance, so the distance between two such random variables X and Y is

d(X, Y ) = ⟨X − Y,X − Y ⟩ = cov(X − Y,X − Y ) = V ar(X − Y )

So

d(uk, vk) = d(uk,
s∑

j=1

ak,juj + ak,kuk)

= ⟨(1− ak,k)uk −
s∑

j=1

ak,juj − ak,kuk, (1− ak,k)uk −
s∑

j=1

aj,kuj⟩

= ((1− ak,k)uk −
s∑

j=1

ak,juj)
T ((1− ak,k)uk −

s∑
j=1

ak,juj)

=
n∑

i=1

((1− ak,k)ui,k −
s∑

j=1

ak,jui,j)
2
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As we had a system of s linear equations and s + 1 unknown variables, we can express ak,k as
a combination of the other a.,k. So the minimization of this distance gives a unique solution
with the previous constraints. To summarize, for each k = s + 1, . . . , n, we have the following
minimization problem under constraints:

min
ak,1,...,ak,s,ak,k

d(uk, vk) such that


⟨v1, vk⟩ = 0

. . .
⟨vs, vk⟩ = 0

with vk =
s∑

j=1

ak,juj + ak,kuk

Solving the problem for every k = s+ 1, . . . , n gives us the transition matrix A. Then, with X
the coordinates of a vector in the base B and X ′ in the base B′, we can write

X ′ = AX

Meaning that we will compute, for every observation, the transformation of each vector -
corresponding to each individual - in the new basis.

Extreme-case scenarii We can wonder what would happen in the extreme-case scenario
in which the non-sensitive variables are already uncorrelated with the sensitive ones. Then,
we do not need to transform the non-sensitive variables: A = In We have ⟨vj, vk⟩ = 0 for
j = 1, . . . , s and k = s + 1, . . . , n and we have a minimal distance as d(uk, vk) = d(uk, uk) =
⟨uk − uk, uk − uk⟩ = 0.

The other extreme-case scenario is the one in which all the variables are the non-sensitive
variables are perfectly (positively or negatively) correlated with the sensitive ones. Then it
means that the non-sensitive variables are a linear function of the sensitive ones, and conse-
quently, of each other. It is therefore impossible to have non-sensitive vectors uncorrelated with
the sensitive ones. Fortunately, in reality, when we have our datasets, we only have samples
of ‘true’ distributions, meaning that variables are never perfectly correlated with each other
(except if a variables appears twice, but we can delete the duplicate). In the worst case, if
the non-sensitive variables are very correlated to the non-sensitive ones, we will end up with
transformed non-sensitive variables that have a very low variance, meaning that they will not
explain the output very well.

3.3.2 Results

Transition matrix The average transition matrix obtained on the 100 datasets is

A =


1 0 0 0 0 0
0 1 0 0 0 0

−0.32 0.72 1 0 0 0
0.15 0.11 0 1 0 0
0.28 1.93 0 0 1 0
−0.21 0.48 0 0 0 1

±


0 0 0 0 0 0
0 0 0 0 0 0

3e−3 6e−3 0 0 0 0
2e−3 3e−3 0 0 0 0
1e−2 2e−2 0 0 0 0
2e−3 3e−3 0 0 0 0


This means that, on average,

A−1 =


1 0 0 0 0 0
0 1 0 0 0 0

0.32 −0.72 1 0 0 0
−0.15 −0.11 0 1 0 0
−0.28 −1.93 0 0 1 0
0.21 −0.48 0 0 0 1
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X ′
1 = A−1X1 = .32A− 0.72B +X1

X ′
2 = A−1X2 = −0.15A− 0.11B +X2

X ′
3 = A−1X3 = −0.28A− 1.93B +X3

X ′
4 = A−1X4 = .21A− 0.48B +X4

Transformed variables Figure 18 shows the correlations between variables before and after
transforming the X(i). We can see that the correlations between A (respectively B) and the
X(i)′ have been reduced to zero, which was the goal of the procedure. Most correlations between
other variables are close to before and after the change of basis, keeping the same signs and
orders of magnitude. The most noticeable difference is that corr(X(1), X(3)) went from -0.019
to -0.12.

(a) Before (b) After

Figure 18: Heatmaps of correlations before and after transformation of the X(i)

Prediction We then apply the baseline model to predict the output, using only the trans-
formed non-sensitive variables as explanatory variables.
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Without protected variables
Variable Coefficient Standard Error P-value
Intercept −1.76± .01 .05± .00 .00± .00

X1 .65± .00 .02± .00 .00± .00
X2 2.68± .01 .05± .00 .00± .00
X3 2.46± .00 .01± .00 .00± .00
X4 −2.41± .01 .03± .00 .00± .00

Transformed variables
Variable Coefficient Standard Error P-value
Intercept −1.65± .00 .01± .00 .00± .00

X1 .55± .00 .02± .00 .00± .00
X2 2.72± .01 .05± .00 .00± .00
X3 .24± .00 .01± .00 .00± .00
X4 −2.46± .01 .03± .00 .00± .00

Table 19: Weights of the logistic regression

Performance evaluation

• Table 20 gives the accuracy of the model. Compared to when simply deleting the protected
variables, the accuracy decreases by only 0.23 points.

• Figure 19 gives the ROC curve of the model. As a reminder, the AUC of the model
without protected variables was of 0.7466. The AUC for the model with transformed
variables has only decreased by 0.0028.

(%) Without protected variables With transformed variables
Accuracy 81.04± .05 80.81± .05

Table 20: Global metrics

Figure 19: ROC curve for the model with transformed variables

Fairness evaluation

• Acceptance rate

– The global acceptance rate has increased by 0.73 points on average, meaning that
globally, more individuals get predicted the outcome Y = 0 with the model using
the transformed variables compared to the model without protected variables.
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– For groups A: the difference in acceptance rates is now close to zero, which was the
goal of the change of basis method. The reason why it is not exactly zero might
come from the fact that we have approximated independence to correlation, so there
might be some non linear dependence left between the transformed non-sensitive
variables and A. It is interesting to note that the acceptance rate for group A = 0
has decreased and for A = 1 it has increased, and the advantageous position has
shifted: the acceptance rate for group A = 0 is now slightly lower than the one for
group A = 1.

– For groups B: the difference in acceptance rates is now null, meaning that there we
have X(i) ⊥ A ie independence.

– Looking at protected subgroups in figure 22, not all subgroups are treated fairly
by the model as we have slight gaps between subgroups with A = 0 and A = 1.
The order of unfairness has also changed: now, the most disadvantaged subgroup
is (A = 0, B = 0) when it used to be the most advantaged one, and the most
advantaged subgroup is (A = 1, B = 1) when it used to be the most disadvantaged
one.

• True positive rate

– The global true positive rate has decreased compared to the model without protected
variables.

– Groups A: as for the acceptance rate, the difference in true positive rates is now
closer to zero, and the sign has changed, meaning that group A = 0 now has a lower
true positive rate than group A = 1.

– Groups B: the difference in true positive rates is now very close to zero and has also
changed signs.

– As for the acceptance rate, the most advantaged subgroup now used to be the most
disadvantaged and vice versa.

• False positive rate

– Globally, the false positive rate has also decreased.

– Groups A: the difference in false positive rates has also decreased and changed signs.

– Groups B: surprisingly, the difference in false positive rates has increased and changed
signs.

– Looking at subgroups, there has also been a shift in which subgroup is the most and
least advantaged.

To conclude, looking at the variable A, we have almost reached statistical parity, and for B,
we have. We are closer to equal opportunity, although there was a shift in the advantage. For
equalized odds, we are closer to fairness when looking at variable A but not B, and we have for
both a shift in the advantage. All in all, the change of basis method has achieved the removal
of linear dependence between the protected and non protected variables. We can also draw the
conclusion that all three fairness definitions are not compatible.
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Without protected variables
(%) Global A=0 A=1 Difference B=0 B=1 Difference
AR 94.29± .05 97.05± .04 87.55± .10 9.50± .09 95.38± .10 94.07± .055 1.31± .09
TPR 97.02± .03 98.51± .03 93.07± .09 5.44± .08 97.41± .08 96.97± .04 .44± .08
FPR 82.92± .12 89.94± .13 72.53± .23 17.41± .26 84.15± .46 82.82± .13 1.33± .48

Transformed variables
(%) Global A=0 A=1 Difference B=0 B=1 Difference
AR 95.02± .04 94.91± .05 95.28± .06 −0.37± .06 95.02± .11 95.02± .04 .00± .01
TPR 97.38± .03 97.15± .04 97.97± .05 −0.82± .05 97.07± .08 97.41± .03 −0.34± .08
FPR 85.58± .13 84.02± .17 87.92± .17 −3.90± .21 83.62± .51 85.74± .13 −2.13± .50

Table 21: Fairness metrics

Without protected variables

(%) A=0 A=1
B=0 B=1 B=0 B=1

AR 97.43± .08 97.00± .04 88.94± .27 87.43± .10
TPR 98.56± .06 98.50± .03 93.41± .25 93.04± .09
FPR 90.01± .44 89.92± .13 72.61± .87 72.53± .24

With transformed variables

(%) A=0 A=1
B=0 B=1 B=0 B=1

AR 94.87± .11 94.93± .05 95.18± .23 95.24± .06
TPR 96.75± .10 97.20± .04 97.60± .19 97.99± .04
FPR 82.62± .52 82.28± .18 86.34± .69 87.92± .17

Table 22: Fairness metrics by protected subgroups

3.4 Conclusion on the methods

We tested multiple preprocessing methods to mitigate unfairness. We compared the follow-
ing: not doing anything, removing the protected variables, and transforming the non-sensitive
variables in a way that they become uncorrelated to the sensitive ones. The goal of this last
method was to approach fairness under the statistical parity, with equal acceptance rates for
each protected group.

Comparing the model using all variables and the one using only non-protected variables, we
can conclude that simply removing protected variables is not enough to reach fairness, under
any definition. Depending on the correlation (and dependence) structure of the data, fairness
can improve, with closer values of metrics for the different protected groups, as we saw is the
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case when looking at the B variable. But it can also magnify unfairness as we saw is the case
when looking at the A variable. All in all, it is not a solution.

With our change of basis method, we ensure that the variables that will be used by the
model are uncorrelated with the protected variables. Of course, uncorrelatedness is only an
approximation of independence and there could still be non-linear relationships between the
protected and transformed variables, which is why acceptance rates are only approximately
equal for protected groups.

With this method, we have a slight decrease in accuracy, because we have no access to the
information about the protected attributes, which were correlated with the outcome.

Now that we have studied a simulated dataset in which the correlation structure was known,
we will take on a real dataset.
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4 Use case: mortality of individuals with melanoma of the
skin

In this section, we will study a real-life use case: the mortality of individuals with melanoma
skin cancer. It is the 17th most common cancer worldwide, with over 300,000 new cases in 2020
[41]. In the US, the 5-year survival rate is of 93.7% over the period of 2012 to 2018 [29].

4.1 Some information about skin cancer

The skin, the body’s largest organ, consists of several lays. The two main ones are the
epidermis and the dermis, as shown in figure 20. Skin cancer begins in the epidermis, which
consists of three types of cells: squamous cells, basal cells and melanocytes. Melanocytes are
cells that can make melanin, which is the pigment giving the skin its color.

Two different cancers can start in the skin: non-melanoma and melanoma, each representing
about half of skin cancers. Non-melanoma skin cancer forms in the lower part of the epidermis
or in squamous cells, but not in melanocytes. Melanoma forms in melanocytes and is more
likely to spread out to other parts of the body. It can start in the skin, but also in mucous
membranes such as parts of the eye. In this thesis, we focus on melanoma.

Figure 20: The anatomy of the skin [29]

Medical literature [29] identifies several risk factors for melanoma, including:

• Fair complexion

• Exposure to natural or artificial sunlight

• Exposure to certain environmental factors (radiation, solvents, . . . )

• History of blistering sunburns

• Presence of several large or many small moles

• Family history of unusual moles or melanoma

• Weakened immune system
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• Changes in genes linked to melanoma

Melanomas are mainly characterized by the location, thickness and ulceration (ie whether
it has broken through the skin) of the tumor, the speed at which cancer cells divide, its spread
to lymph nodes and other parts of the body. All of these factors can impact the severity of the
condition. The TNM staging system is an internationally recognized standard for classifying
cancers:

• T describes the size of the primary tumor, as shown in figure 21:

– Tis: in situ

– T1: less than 1 mm thick

– T2: between 1 and 2 mm thick

– T3: between 2 and 4 mm thick

– T4: more than 4 mm thick

Figure 21: Tumor thickness [50]

• N describes the spread to regional lymph nodes:

– N0: no melanoma cells in the nearby lymph nodes

– N1: melanoma cells in one lymph node or in-transit, satellite or microsatellite metas-
tases

– N2: melanoma cells in 2 or 3 lymph nodes or in one lymph node and in-transit,
satellite or microsatellite metastases

– N3: melanoma cells in 4 or more lymph nodes or in 2 or 3 lymph nodes and in-
transit, satellite or microsatellite metastases or in any number of lymph nodes stuck
to each other (matted)

• M describes the presence of metastasis (M0 for non-metastatic and M1 for metastatic).

The more well-known overall stage grouping describes the progression of a cancer thanks to five
categories:

• Stage 0: also called in situ, when abnormal melanocytes are found. They can become
cancer and spread.

• Stage I: cancer has formed and is localized.
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• Stage II: the cancer is locally advanced, in early stages.

• Stage III: the cancer is locally advanced, in late stages.

• Stage IV: the cancer has spread to other parts of the body which may be distant to the
origin site, it is metastatic.

The link between the two staging systems is straightforward, as seen in table 23.

Stage T N M
0 0 0 0
I 1-2 0 0
II 3-4 0 0
III 1-4 1-3 0
IV 1-4 1-3 1

Table 23: Staging and its relation to the TNM system

4.2 Database presentation and mapping

Presentation In order to model the mortality of melanoma of the skin cancer patients, we
used the public research SEER database. SEER is the Surveillance, Epidemiology, and End Re-
sults program of the National Cancer Institute of the United States that collects and publishes
cancer information about around 48% of the American population. This data collection process
dates back to 1973, with around 400,000 new cases collected yearly in the most recent years. It
is the largest and one of the most reliable cancer database, which makes it a dependable source
of information for all types of studies. It is also representative of the US population in terms
of measures of poverty and education.

The variables describe:

• the patient: ID number, sex, age at diagnosis, year of diagnosis, origin, marital status at
diagnosis, . . .

• the cancer (characteristics at diagnosis): type, site of origin, tumor size, spread to lymph
nodes, metastatic state, stage, . . .

Mapping This database is a huge source of information: there are 5,075,266 observations
and 164 variables. Melanoma of the skin cancers represent about 4% of all observations. Along
the years, the way cancers are described has drastically changed, mostly because of the changes
in classification of diseases standards. We therefore had to preprocess the data by studying
the significance of variables in order to have the same standards throughout the years. For
example, we had to regroup 8 different variables to determine the size of the tumor.

Figure 22 shows how much preprocessing had to be done: the white spaces represent the
missing values. In the raw data, we had more than 5 million rows and 164 columns. After
keeping only patients with melanoma of the skin, mapping and deleting variables that had
nothing to do with skin cancer (about breast cancer for example), we have 177,960 rows and
47 columns.
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(a) Raw: 5,075,266 rows, 164 columns

(b) After mapping: 177,960 rows, 47 columns

Figure 22: Missing values (in white) in the raw and mapped databases

Missing values and initial variable selection After the mapping step, we still have many
missing values. As we saw in section 1.1.3, there are many constraints to be taken into account
when choosing which variables to keep for our model.

• Medical constraints:
The probability of dying from cancer greatly depends on the metastatic state, so we
cannot do without it. We remove individuals with missing metastatic state from the
database.
We also need to have the information on whether the individual is alive or not at the end
of the observation period, so we remove individuals with missing information.
Some variables are not medically relevant, for example the type of reporting source: if
the information about an individual was collected by a hospital, a lab or another medical
facility. So we delete this type of variable.

As mortality rates evolve and change over the years, we need to set our time window
so that the rates are still valid. Figure 23 shows the year of diagnosis distribution. We
already have only recent years, mainly because we deleted individuals with unspecified
metastatic state, and this variable was not collected in the past.
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Figure 23: Number of new diagnoses per year

• Underwriting constraints:
We only keep individuals who are between 18 and 80 years old, as they are the ones that
are covered by most markets.
Normally, underwriting constraints impose, depending on the local regulation, the deletion
of sensitive variables, like the origin of the individual. But this thesis focuses on the
subject of discrimination, so we have to keep these variables to be able to measure bias.

• Modeling constraints: we do not keep variables to are strongly correlated with each other.
This is the case for variables representing redundant information: we have 3 different
variables for age at diagnosis, 4 different variables for origin, . . .We only keep one of
each, the most complete one.

For the remaining missing values, we decided to delete the columns with almost only missing
values, as they will not be useful for the model. Then, for numerical variables, the median of
the series is assigned to any missing value. For categorical variables, we replace the missing
values by a category ‘Missing’. In the end, we are left with 101,797 rows and 28 columns.

4.3 Specificity of survival analysis

Most of the time, survival duration is observed partially. This can be due to the occurrence
of the event of interest - in our case, death - outside the observation period, or to other events
that result in the individual leaving the study (eg lapses, hospital transfers, recording systems
failure). This censoring and truncation characterize survival data. If these effects were ignored,
the probability of the event of interest would be underestimated. Another mistake would be
to remove individuals for which the observation is incomplete from the study, because it would
once again lead to biased estimations.

To deal with these issues, we either need to use specific models or modify the structure
of the data to use standard models. We will use this second approach, which transforms the
data by separating it into small time intervals. This allows to model the number of deaths
by standard Machine Learning techniques using the exposure to risk as weights, taking into
account the censoring.

4.3.1 Exposure

A first step is therefore to compute the exposure to risk of each individual. It can be computed
differently depending on the hypothesis made on mortality. We compute the initial exposure
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which represents the time each individual was exposed to risk in the interval. It is called initial
because it is based on the information at the beginning of the interval.

The individual initial exposure ei,j for individual i in time interval [τj, τj+1] takes value:

• 1 if the individual is alive during the entire time interval

• 1 if the individual dies during the time interval

• the fraction of the time interval he was observed if the individual is not observed during
the entire time interval

Formally, denoting

ci,j the censoring time of individual i in time interval [τj, τj + 1]

ti,j the death time of individual i in time interval [τj, τj + 1]

wj the number of individuals withdrawn from the study in time interval [τj, τj + 1]

lj the number of individuals that are alive during the entire time interval [τj, τj + 1]

dj the number of individuals that died during the time interval [τj, τj + 1]

we can write the individual initial exposure as:

ei,j =


1 if ti,j > 1 and ci,j > 1
1 if ti,j < 1
ci,j if ci,j < 1

= 1ti,j>1 × 1ci,j>1 + 1ti,j<1︸ ︷︷ ︸
1−1ci,j<1

+ci,j1ci,j<1

The global initial exposure for all individuals in time interval [τj, τj + 1] is

Ej =

lj∑
i=1

ei,j

=

lj∑
i=1

(1− 1ci,j<1 + ci,j1ci,j<1)

= lj − wj +

wj∑
i=1

ci,j

The number of deaths is the sum of the number of observed deaths and expected deaths (from
censored individuals). Writing down

qj = P(T < τj + 1|T > τj) the mortality rate in time interval [τj, τj + 1]

ci,jqj = P(T < τj + ci,j|T > τj) the mortality rate in time interval [τj, ci,j]

we can compute

dj = (lj − wj)qj +

wj∑
i=1

ci,jqj

= ljqj −
wj∑
i=1

1−ci,jqj+ci,j
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The Balducci hypothesis supposes that mortality rates decrease over the interval and are defined
as:

1−ci,jqj+ci,j = P(Ti ≤ τj + 1|Ti > τj + ci,j)

= (1− ci,j)P(Ti ≤ τj + 1|Ti > τj)

= (1− ci,j)qj

So we can write

dj = ljqj − qj

wj∑
i=1

(1− ci,j)

Solving the formula for qj gives us:

q̂j =
dj

lj −
∑wj

i=1(1− ci,j)
=

dj
lj − wj +

∑wj

i=1 ci,j

q̂j =
dj
Ej

We obtained the estimation for mortality rates on time interval [τj, τj + 1], corrected for cen-
soring, using the Balducci hypothesis. Although it is generally not verified because mortality
rates increase with time, the errors can be ignored as withdrawals are small compared to the
population.

4.3.2 Five-year mortality rates: a first look into the influence of each variable

In order to better understand the influence of certain factors on the mortality of melanoma
of the skin patients and to compare our data with medical literature, we will compute the five-
year mortality rates depending on these factors. In relation to the previous section, we need to
compute the number of deaths and the global initial exposure in time interval [0, 5] (in years).
For the number of deaths, we need to separate the cases of non-metastatic and metastatic
patients, because metastasis implies the spread of the cancer to other sites, meaning that the
cause of death can be a different cancer or disease that was caused by the initial cancer. For
non-metastatic patients, the number of deaths will be computed with the number of deaths
caused by skin melanoma and for metastatic patients, all causes of death will be taken into
account. For individual i, we compute the death variable:

dM0
i,5 =

{
1 if Dead (due to skin melanoma) and survival < 5 years
0 else

dM1
i,5 =

{
1 if Dead (all causes) and survival < 5 years
0 else

Then, we compute the individual initial exposure as presented in the last section:

ei,5 =


1 if ti,5 > 1 and ci,5 > 1
1 if ti,5 < 1
ci,5 if ci,5 < 1

=

{
1 if Vital_status=0 or Survival_years ≥ 5 Years
Survival_years

5
else
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Then, the estimation of the 5-year mortality rate is:

q̂5 =

∑l5
i=1 di,5∑l5
i=1 ei,5

We will compare the estimated 5-year mortality rates depending on the following factors:
metastatic state (M), tumor size (T), spread to regional lymph nodes (N), stage, gender, origin
and age. As we stated earlier, we need to separate the cases of non-metastatic and metastatic
cancers, but without taking into account the metastatic state and looking at deaths caused by
melanoma of the skin only, the 5-year mortality rate is of 7.59%, ie the 5-year survival rate is of
92.41% which is very close to the survival rate of 93.7% given by the National Cancer Institute.

For the following, it is important to note that looking at mortality rates in different
categories is tricky as groups may have different age distributions. Mortality rates by
sex might capture correlation with age, if for example there are more observations of
one gender than the other in some age groups.

The five-year mortality rate by metastatic state is given in table 24. As expected, the
mortality rate for metastatic patients is considerably higher than for non-metastatic patients.

Melanoma of the skin All causes
M0 5.28%
M1 83.00%

Table 24: Five-year mortality rate by presence of metastasis

We expect mortality rates to go up with larger tumors. In the non-metastatic case, except
for missing and T0 tumor sizes, the thicker the tumor, the higher the mortality rate. For a
tumor size T1, the 5-year mortality rate is of 1.23%, going up to 28.13% for tumor size T4. The
high mortality rate for T0 can be explained by the small number of observations: there are only
496 records of it, whereas for T1 for example there are 67,243 observations. A small number of
observations results in a high variance in the estimation. Individuals with missing tumor sizes
have a five-year mortality rate which is close to individuals with T2 tumors. In the metastatic
case, we have the same problem for individuals with missing and T0 tumor sizes. Another
unexpected result is that q̂M1,T1

5 > q̂M1,T2
5 . This last result can come from the small sample

sizes that result in a great estimation variance: there are respectively 202 and 154 individuals
with tumors sizes T1 and T2. All mortality rates for metastatic cancers are in a smaller interval
than for non-metastatic cancers. This might be interpreted as a lower predictive importance
of the size of the primary tumor for metastatic cancers, and this might be due to the fact that
these cancers have already spread to other sites.
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Melanoma of the skin All causes
Missing 8.41%

T0 32.56%
T1 1.23%
T2 7.00%
T3 16.53%

M0

T4 28.13%
Missing 85.93%

T0 82.09%
T1 79.87%
T2 75.54%
T3 82.90%

M1

T4 83.52%

Table 25: Five-year mortality rate by tumor size

The spread to regional lymph nodes indicates how far a cancer has spread. The mortality
rates are expected to go up with a more extensive spread. Only stages III and IV exhibit
regional lymph node spread. For non-metastatic cases, we observe as expected an increase in
mortality rates with greater spread. For the metastatic case, we have the same issues as in the
previous paragraphs: mortality rates do not behave as expected. This can be due either to the
little number of observations or the fact that with metastasis, the cancer has necessarily spread
to regional lymph nodes, so the information collection process was faulty.

Melanoma of the skin All causes
Missing 6.02%

N0 3.30%
N1 23.59%
N2 33.11%

M0

N3 47.55%
Missing 86.49%

N0 78.99%
N1 85.06%
N2 74.21%

M1

N3 84.38%

Table 26: Five-year mortality rate by spread to regional lymph nodes

Looking at the stage of the cancer, it is common knowledge that more advanced stages
imply higher mortality rates. This is what we observe here. Non-metastatic cancers can have
grades ranging from I to III, and stage IV is defined by the presence of metastases. There
are no missing stage information for individuals with stage IV cancers, because we imputed
the missing values: remembering table 23, metastatic cancers are stage IV, which is how the
information was completed for the variable.
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Melanoma of the skin All causes
Missing 5.36%

I 1.44%
II 14.79%M0

III 29.87%
M1 IV 83.00%

Table 27: Five-year mortality rate by stage

Medically speaking, skin cancer behaves the exact same way for both genders. Mortality
rates for the general population in the US are higher for men than women, which can be
explained by numerous factors such as behavior differences. In insurance, gender is a sensitive
variable and risk selection or pricing cannot discriminate by gender, so the same mortality rates
have to be used for both men and women. In the case of melanoma of the skin, mortality rates
are also higher for men. In the case of non-metastatic cancers, the five-year mortality rate for
men is 2.56 points higher than for women and for metastatic cancers, it is 2.83 points higher.

Melanoma of the skin All causes
Women 3.82%M0 Men 6.38%
Women 81.09%M1 Men 83.92%

Table 28: Five-year mortality rate by gender

When looking at the origin variable provided by the SEER database, which classifies individ-
uals into five categories (Hispanic, American Indian/Alaska Native, Asian or Pacific Islander,
Black, White), we observe great disparity. The five-year mortality rates vary greatly between
the categories, both for non-metastatic and metastatic cancers. As we saw previously, skin
cancer is more common in individuals with fair complexions because of the lower melanin pro-
duction. As a result, individuals with darker complexions are less likely to get this type of
cancer and it often goes undetected for a longer time, which explains higher mortality rates.
It could also be due to other factors such as socioeconomic status, which is still very related
to origin in the US, where this data comes from. Another reason for these gaps is the variance
of the estimation, as not all categories contain enough observations to have a robust estima-
tion. It is interesting to notice that individuals with missing information about race/origin are
predicted very low five-year mortality rates compared to all classes. This is caused by the low
number of such observations, leading to a less robust estimator.
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Melanoma of the skin All causes
Hispanic 7.34%
Missing 0.07%

American Indian/AK Native 9.86%
Asian or Pacific Islander 11.73%

Black 18.82%

M0

White 5.21%
Hispanic 86.53%
Missing 35.71%

American Indian/AK Native 88.45%
Asian or Pacific Islander 93.85%

Black 81.85%

M1

White 82.71%

Table 29: Five-year mortality rates by origin

Marital status can impact health behavior, leading to differences in mortality rates. In our
data, we indeed have different estimated five-year mortality rates for all marital status classes.
The individuals with missing information about their marital status have the lowest mortality
rates, for both non-metastatic and metastatic cancers. For both metastatic states, divorced
and widowed individuals have the highest five-year mortality rates, but these categories also
correspond to an older population.

Melanoma of the skin All causes
Divorced 9.71%
Married 5.86%
Missing 1.75%

Separated 8.56%
Single 6.27%

Unmarried 7.71%

M0

Widowed 11.17%
Divorced 85.15%
Married 81.61%
Missing 77.78%

Separated 80.51%
Single 82.94%

Unmarried 74.38%

M1

Widowed 90.75%

Table 30: Five-year mortality rates by marital status
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4.3.3 A different data structure needed to use standard models: pseudo table

As mentioned previously, time discretization and data structure modification allow the use of
standard Machine Learning models to predict the number of death in the desired time interval.
This data structure modification is done by creating pseudo tables: for each individual, we
create as many rows as the maximal duration. We consider times in years rather than in
months, as it seems granular enough for our modeling purposes. In each row, we will have a
death variable indicating if the individual died during that time interval and the initial exposure,
which will then be used as a weight or an offset when applying the standard models to predict
the number of deaths. Another advantage of the approach is that we can have time-varying
information about an individual, such as the evolution of his marital status or of the size of his
tumor. Unfortunately, in the SEER database, we do not have access to this kind of information,
so we can question the relevance of using such variables.

The step-by-step process is as follows. We have for each individual i his age at diagnosis, year
of diagnosis, survival time in months and a variable indicating if he died because of melanoma
of the skin. The first step is to compute the survival time in years and the maximal duration,
which is the ceiling of the survival time in years. Then, we create as many rows for each
individual i as his/her maximal duration. We can then compute for each of the lines j the
duration since diagnosis in years, and the age, year and death due to melanoma in that time
interval. Finally, we can compute the individual exposure are we saw in the previous section.
For each time interval j: [τj, τj + 1] which corresponds to a year, we compute the variables of
interest. The duration since diagnosis (in years) is

Durationj = j − 1

the death variable (due to melanoma, in the time interval k) is

di,j =

{
1 if Death_melanoma = 1 and j = Max_duration
0 else

the individual initial exposure is

ei,j =

{
1 if Yi,j = 1 or j < Max_duration
Si − Durationj else

We will create the pseudo table step-by-step, starting from the raw data from table 31:

• Individual i=1:

– For the survival time in years, we just convert the number of months into a number
of years: S1 = 25/12 = 2.08.

– For the maximal duration in years, we take the ceiling of the survival time in years:
Max_duration = ⌈S1⌉ = ⌈2.08⌉ = 3.

– So we create 3 lines j = 1, 2, 3 for this individual:
∗ j=1: Duration1 = j − 1 = 0

Age=Age_dx=25
Year=Year_dx=2002
Death_melanoma d1,1 = 0 because Death_melanoma ̸= 1
Exposure e1,1 = 1 because j = 1 < 3 = Max_duration

∗ j=2: Duration2 = j − 1 = 1
Age=Age_dx+1=26
Year=Year_dx+1=2003
Death_melanoma d1,2 = 0 because Death_melanoma ̸= 1
Exposure e1,2 = 1 because j = 2 < 3 = Max_duration
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∗ j=3: Duration3 = j − 1 = 2
Age=Age_dx+2=27
Year=Year_dx+2=2004
Death_melanoma d1,3 = 0 because Death_melanoma ̸= 1
Exposure e1,3 = S1 − D1,3 = 2.08 − 2 = 0.08 because Y1,3 ̸= 1 and j = 3 =
Max_duration

• Individual i=2:

– S2 = 4/12 = 0.33.

– Max_duration = ⌈S2⌉ = ⌈0.33⌉ = 1.

– So we create 1 line j = 1 for this individual:

∗ j=1: Duration1 = j − 1 = 0
Age=Age_dx=37
Year=Year_dx=2004
Death_melanoma d2,1 = 1 because Death_melanoma = 1 and j = 1 = Max_duration
Exposure e2,1 = 1 because Y2,1 = 1

• Individual i=3:

– S3 = 58/12 = 4.83.

– Max_duration = ⌈S3⌉ = ⌈4.83⌉ = 5.

– So we create 5 lines j = 1, 2, 3, 4, 5 for this individual:

∗ j=1: Duration1 = j − 1 = 0
Age=Age_dx=56
Year=Year_dx=2010
Death_melanoma d3,1 = 0 because j = 1 ̸= 5 = Max_duration
Exposure e3,1 = 1 because j = 1 < 5 = Max_duration

∗ j=2: Duration2 = j − 1 = 1
Age=Age_dx+1=57
Year=Year_dx+1=2011
Death_melanoma d3,2 = 0 because j = 2 ̸= 5 = Max_duration
Exposure e3,2 = 1 because j = 2 < 5 = Max_duration

∗ j=3: Duration3 = j − 1 = 2
Age=Age_dx+2=58
Year=Year_dx+2=2012
Death_melanoma d3,3 = 0 because j = 3 ̸= 5 = Max_duration
Exposure e3,3 = 1 because j = 3 < 5 = Max_duration

∗ j=4: Duration4 = j − 1 = 3
Age=Age_dx+3=59
Year=Year_dx+3=2013
Death_melanoma d3,4 = 0 because j = 4 ̸= 5 = Max_duration
Exposure e3,4 = 1 because j = 4 < 5 = Max_duration

∗ j=5: Duration5 = j − 1 = 4
Age=Age_dx+4=60
Year=Year_dx+4=2014
Death_melanoma d3,5 = 1 because Death_melanoma = 1 and j = 5 = Max_duration
Exposure e3,5 = 1 because Y3,5 = 1
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In the end, we get table 32.

i Age_dx Year_dx Survival (months) Death_melanoma
1 25 2002 25 0
2 37 2004 4 1
3 56 2010 58 1

Table 31: Raw survival data

i
Survival
(years)
Sj

Max_duration
(years) j Durationj

(years) Age Year Death_melanoma_j
di,j

Exposure
ei,j

1 25/12=2.08 3
1 0 25 2002 0 1
2 1 26 2003 0 1
3 2 27 2004 0 0.08

2 4/12=0.33 1 1 0 37 2004 1 1

3 58/12=4.83 5

1 0 56 2010 0 1
2 1 57 2011 0 1
3 2 58 2012 0 1
4 3 59 2013 0 1
5 4 60 2014 1 1

Table 32: Pseudo table created from the raw survival data

4.4 Descriptive statistics

We will perform the descriptive statistics analysis on the pseudo table. As mentioned before,
our study is restricted to non-metastatic cancers.

4.4.1 Variable identification

The 28 variables available after mapping and applying underwriting and medical constraints
are described in appendix D. They can be categorized into 3 groups: the explanatory variables,
the variable of interest and the weight variable. Within the explanatory variables category, we
have non-sensitive and sensitive variables.

Non-sensitive explanatory variables They are the ones that are pure descriptors of the
medical situation, for example the age, the type of cancer (AYA_site_recode20), the time
since diagnosis (DURATION) or how far the cancer has spread (Extent). Some of them are
continuous and others categorical.
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Sensitive explanatory variables They are the ones that can introduce discrimination.
They directly concern the individual: sex, origin and marital status.

Table 33 gives the number of observations by sex. The group imbalance ratio is

IRSex =
287, 820

249, 118
= 1.16

which is close to 1.

Sex Observations
Female 249,118
Male 287,820

Table 33: Number of observations by sex

Table 34 gives the number of observations by origin. The majority population is the ‘White’
category, with almost 45 times more observations than the second biggest category, ‘Missing’.

Origin Observations
Hispanic 11,034
Missing 11,510

American Indian/AK Native 1,157
Asian or Pacific Islander 3,597

Black 1,767
White 507,873

Table 34: Number of observations by origin

Table 35 gives the number of observations by marital status. The majority class is ‘Married’
and the second largest is ‘Missing’.

Marital status Observations
Divorced 26,160
Married 272,743
Missing 159,649

Separated 1,946
Single 63,729

Unmarried 674
Widowed 12,037

Table 35: Number of observations by marital status

Variable of interest It is the variable that we will predict with our model: the event of
interest is the death due to skin melanoma of the individual in the year (Death_skin).
Table 36 gives the number of observations for each value of Death_skin. There is a great
imbalance between classes: the group imbalance ratio is

IRDeath_skin =
533, 167

3, 771
= 141.39

meaning there are 141.39 more observations for Death_skin=0 than for Death_skin=1.
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Death_skin Observations
0 533,167
1 3,771

Table 36: Number of observations by death_skin

The weight variable As mentioned previously, because of the characteristics of survival
data, we need to take into account the exposure of individuals to predict mortality. The
exposure variable will therefore be used as a weight in the model.

4.4.2 Multivariate analysis

We will now study the relationships between variables. For that, we will focus on correlations.
As we have already mentioned multiple times before, absence of correlation is not equivalent
to independence.

As we have many variables and had to turn categorical features into binary data, we end
up with a large correlation matrix. The keys points are:

• The bright blue colors are negative correlations between different categories of the same
variables, for example between Sex_Female and Sex_Male.

• Generally speaking, there are correlations between Tumor, Positive_Node, Stage,
Extent, Ulceration, Mitotic rate, and Surg_LN/oth/primsite, which are
linked with each other as they are the medical variables that allow the diagnosis.

• Time variables are naturally correlated with each other: age with age at diagnosis, year
with year of diagnosis and duration.

• There are a few light correlations with the variable of interest, all less than 0.13 (in
absolute value).

• Concerning the missing values, the dummy variables for Missing values of Tumor, Stage
and Positive_Nodes are strongly positively correlated with each other. It seems
coherent, as the stage is defined thanks to the TNM system. Missing categories of other
variables are correlated with these variables and with each other: Surg_primsite,
Surg_LN, Surg_oth, Extent, Ulceration, and these variables also describe the
gravity of the cancer. A Missing origin or marital status is lightly positively correlated
with the previously mentioned variables. We can conclude that when there are Missing
values for an individual, they are for all or most of the mentioned categories.

With this study of correlations, we can conclude that under the modeling constraints, not all
variables can be kept.
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Figure 24: Heatmap of correlations
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5 Discrimination mitigation applied to real mortality data

5.1 Adapting the logistic regression to survival data

If we considered a simple logistic regression to predict the event of death δi,j ∼ B(qj), we
would not take into account censoring. Instead, we assign weights to the sample with the
individual initial exposure. This way, we estimate the mortality rate qj = P(T ≤ τj +1|T > τj)

with q̂j =
∑

i δi,j∑
i ei,j

.

Proof. The weighted likelihood of the model is

L =

lj∏
i=1

q
δi,jei,j
j (1− qj)

(1−δi,j)ei,j

The log likelihood to maximize is

log(L) =

lj∑
i=1

(
δi,jei,jlog(qj) + (1− δi,j)ei,jlog(1− qj)

)
Deriving with respect to qj, we obtain

dlog(L)

dqj
=

lj∑
i=1

(δi,jei,j
qj

− ei,j − δi,jei,j
1− qj

)
Equalizing with 0, we get

(1− q̂j)

lj∑
i=1

δi,jei,j = q̂j

lj∑
i=1

(
ei,j − δi,jei,j

)
ie q̂j =

∑
i δi,jei,j∑
i ei,j

=

∑
i δi,j∑
i ei,j

as δ = 1 ⇒ e = 1

5.2 Variable selection

In order to select the variables that are relevant to the model performance, we begin with a
model with all variables. Table 37 gives the coefficients of the regression, with their standard
errors and p-values. We will only keep the variables with a p-value below or equal to 0.005, as
it is good practice in modeling. The p-values that are above 0.005 are highlighted in orange.
Variables that are not statistically significant are:

• AGE

• reg_nod_ex

• Tot_num_benin
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• AYA_site_rec20

• Surg_LN

• Surg_oth

This does not necessarily mean that these variables are not medically relevant.

Variable Coefficient Standard error P-value
const 174.9219 13.260 0.000
DURATION -0.0191 0.003 0.000
Yr_dx -0.0358 0.004 0.000
Age_dx 0.0207 0.002 0.000
YEAR -0.0549 0.003 0.000
AGE 0.0016 0.002 0.396
Sex_Female -0.3927 0.043 0.000
reg_nod_pos 0.0289 0.007 0.000
reg_nod_ex 0.0003 0.002 0.849
Mitotic rate 0.0528 0.007 0.000
Tot_num_in_situ -0.0742 0.023 0.002
Tot_num_benin 0.0777 0.170 0.648
Laterality_Bilateral 0.6875 0.331 0.038
Laterality_Not a paired site 0.4738 0.061 0.000
Laterality_One side 0.0624 0.200 0.756
Laterality_Paired site 0.2974 0.093 0.001
Laterality_Paired site midline tumor 0.1334 0.128 0.296
Laterality_Right origin -0.0520 0.044 0.236
Ulceration_Missing 0.1514 0.099 0.128
Ulceration_Ulceration 0.5980 0.048 0.000
Site_rec_WHO08_Male Genital Organs 0.0514 0.565 0.928
Site_rec_WHO08_Vulva 0.5930 0.183 0.001
Origin_American Indian/AK Native 0.3195 0.293 0.276
Origin_Asian or Pacific Islander 0.1691 0.156 0.280
Origin_Black 0.4672 0.167 0.005
Origin_Hispanic 0.2042 0.108 0.060
Origin_Missing -3.0099 1.001 0.003
AYA_site_rec20_Nodular melanoma 0.1249 0.052 0.016
AYA_site_rec20_Superficial spreading
/low cumulative sun damage melanoma -0.0319 0.048 0.510

Mar_stat_Divorced 0.3849 0.064 0.000
Mar_stat_Missing -0.4411 0.072 0.000
Mar_stat_Separated 0.3068 0.225 0.173
Mar_stat_Single 0.2578 0.055 0.000
Mar_stat_Unmarried 0.3127 0.426 0.463
Mar_stat_Widowed 0.3041 0.087 0.000
Extent_Distant 0.7494 0.078 0.000
Extent_Missing 0.6607 0.171 0.000
Extent_Regional 0.4792 0.057 0.000
Surg_LN_Missing 0.0226 0.347 0.948
Surg_LN_Surgery -0.1323 0.057 0.020
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Surg_primsite_Missing 0.7475 0.335 0.025
Surg_primsite_No surgery 0.5662 0.136 0.000
Surg_oth_Missing -0.6858 0.474 0.148
Surg_oth_Surgery 0.2390 0.095 0.012
Tumor_Missing 1.0042 0.173 0.000
Tumor_T0 0.4037 0.203 0.047
Tumor_T2 0.9187 0.076 0.000
Tumor_T3 1.0184 0.094 0.000
Tumor_T4 1.2887 0.097 0.000
Positive_Node_Missing 0.9338 0.214 0.000
Positive_Node_N1 -0.1761 0.588 0.764
Positive_Node_N2 0.0468 0.590 0.937
Positive_Node_N3 0.4810 0.594 0.418
Stage_II 0.5843 0.083 0.000
Stage_III 1.5105 0.590 0.011
Stage_Missing -0.3659 0.207 0.077

Table 37: Coefficients of the complete model,
p-values in orange when above the threshold of 0.005

For our final model, the selected variables need to be statistically relevant, consistent with
medical literature and available at the underwriting stage. We have discussed with the oncol-
ogist of the team, drawing the following conclusions:

• For time variables, the most important ones are the current age and duration. As we had
strong correlations between age and age at diagnosis, we will only keep age. The year
does not influence mortality, as we only have data from recent years.

• Laterality does not influence mortality, but it statistically relevant so we will keep the
variable in the model.

• Fairer complexions are at a higher risk of developing the cancer, but once the cancer has
developed, it does not influence mortality, so all things equal otherwise, we should obtain
the same mortality rates for all Origins. Unfortunately, and especially in the US, Origin
is very often a proxy for social economic status, which influences access to healthcare for
example, which in turn has consequences on mortality risks.

• Stage is a combination of the TNM staging variables, so there are strong correlations
between them, and there is no use in keeping them all. So we will not keep the Stage
variable.

To conclude, we will keep the AGE and Laterality variables. We note that we are left with
the three sensitive variables, Sex, Origin and Mar_stat.
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5.3 Regression model with no pre-processing step

As we have done in the simulated case, we begin by applying the regression model without
any particular modifications. This will allow a comparison with other methods. As we are left
with many variables, the coefficients of the regression are given in appendix E.

Figure 25 gives a visual understanding of the coefficients. We have an intercept and only kept
the least represented classes for the categorical variables, so the coefficients for the remaining
categorical variables represent the relative risk compared to the most represented class. For
example, for the variable Sex, as we had more observations for Male, we only kept the variable
Sex_Female in our model. The coefficient attributed to this variable by the logistic regression
indicates how much more chances of dying a Female has, compared to a Male. For numerical
variables, the coefficients indicate how much the chances of dying change for an increase of one
in the variable value. We have also included the standard errors, represented by the black lines.

• DURATION: the higher the duration, the lower the probability of dying.

• AGE: the older the individual, the higher his probability of dying.

• Sex: compared to being a Male, being a Female decreases the probability of dying.

• reg_nod_pos: the higher the number of positive regional nodes, the higher the proba-
bility of dying.

• Mitotic rate: the higher the density of mitoses, the higher the probability of dying.

• Laterality: compared to the Left origin category, a Right origin lowers the probability
of death and other categories increases it.

• Ulceration: compared to No ulceration, other categories increases the death probabil-
ity, Ulceration more than Missing.

• Site_rec_WHO08: compared to tumors originating on the Pleura, tumors originated
on the vulva and on male genital organs increase the probability of dying.

• Origin: compared to White, Missing largely decreases the probability of dying. Other
categories increase it, in the increasing order we have Asian or Pacific Islander, Hispanic,
American Indian/AK Native and Black.

• Marital status: compared to Married, Missing decreases the probability of death.
Other categories increase it, in the increasing order we have Unmarried, Single, Separated,
Widowed and Divorced. We must take into account the standard errors, which are larger
than the coefficients for Unmarried and Separated.

• Extent: compared to Localized, all categories increase the probability of dying, in the
increasing order we have Missing, Regional and Distant.

• Surg_primsite: compared to Surgery, other categories increase the probability of
dying, No surgery more than Missing.

• Tumor: compared to T1, larger tumors increase the probability of dying in size order.
Missing increases the same way as T2. But we have an anomaly for T0 as it seems it
increases the probability of dying compared to T1. This might be due to the small sample
size, as we saw when we were looking at the five-year mortality rates.

• Positive_Node: compared to N0, larger numbers of positives nodes increase the prob-
ability of dying. Missing increases it, but not at much as the larger sizes.
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The coefficients are coherent with medical findings: a higher number of positive regional nodes,
the presence of ulceration, a further extent, and a larger tumor all point towards a severe cancer,
which implies lower survival odds.

Figure 25: Coefficients and their standard errors for the model with selected variables

Performance evaluation Figure 26 gives the ROC curve. The performance of the model is
almost the same as with all variables, with an AUC of 0.8769.

Figure 26: ROC curve for the model with selected variables
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In order to compute fairness metrics, we need to classify individuals into two categories
Ŷ = 0 or 1, Ŷ being the event of death due to skin melanoma, 1 if the event occurred ie the
individual died of this cause and 0 otherwise. As the probabilities of death are all very close
to 0, we cannot use the standard threshold of 0.5 to classify individuals. We will select the
threshold by looking at the true percentage of dead individuals. In the entire dataset, we have
about 0.7% of dead individuals, as we saw in the section on descriptive statistics. We will
therefore look for a threshold τ such that

Ŷ = 1 if P(Ŷ = 1) ≥ τ and 0 otherwise, giving 0.7% of individuals with Ŷ = 1

We find τ = 0.1088. This value gives the confusion matrix as shown in figure 38. We have, as
planned, about 0.7% individuals classified with Ŷ = 1. The class Ŷ = 0 is the positive class
here.

Ŷ =0 Ŷ =1
Y = 0 106,236 699
Y = 1 662 95

Table 38: Confusion matrix (model with selected variables)

Fairness evaluation We computed the acceptance rate and the true and false positive rates,
and looked at them globally, by sex, by origin and by marital status. To conduct an extensive
analysis, we should also look at subgroups, crossing information about the three sensitive
attributes, like we did in the simulated case, but it becomes intricate as we have many different
categories, and we risk having too few observations in one of the subcategories.

• Globally, we have values close to 100% for the acceptance and true positive rates, due
to the numerous classifications into the positive class compared to the negative class.
The false positive rate is quite high, as we have 6 times more false positives than true
negatives.

(%) Global
AR 99.26
TPR 99.35
FPR 87.45

Table 39: Global fairness metrics (model with selected variables)

• By sex

– The acceptance rates are very close, only 0.76 points apart, but higher for Female.

– The true positive rates are very close for both genders, only 0.69 points apart, but
higher for Female.

– The false positive rates are 3.87 points part, and higher for Female.

All in all, looking at the three definitions of fairness, the Male sex is always disadvantaged
by this model, although the gaps between metrics are not large.

70



(%) Female Male Difference
AR 99.67 98.91 0.76
TPR 99.71 99.03 0.69
FPR 90.18 86.30 3.87

Table 40: Fairness metrics by sex (model with selected variables)

• By origin

– The acceptance rates are between 92.53% and 100%. The lowest is for Black and
the highest is for Missing.

– The true positive rates are between 93.21% and 100%. The lowest is for Black and
the highest for Missing.

– The false positive rates are very distant. The lowest FPR is for Missing at 0%, then
89.20% for White. The highest is for American Indian/Alaska Native at 100.00%.

It is interesting to note that the Missing category only has true positive classifications,
which explains the values for the fairness metrics. Going back on the regression weights of
figure 25, the Origin_Missing variable has a colossal negative coefficient compared to
other dummy variables, and especially compared to other variables for Origin. When-
ever the origin of an individual was not collected, his probability of dying within the year
is null. We can wonder about the data collection process: perhaps individuals with zero
to no chance of dying were not as ‘interesting’ for the database.
Black is the most disadvantaged group under the statistical parity and equal opportunity
definitions. For the equalized odds definition, Black has the lowest TPR but White has
the lowest FPR, so we cannot conclude on the most disadvantaged group.

(%) White Hispanic Black Asian or
Pacific Islander

American Indian
/AK Native Missing Var

AR 99.33 97.70 92.53 96.63 98.72 100.00 6.10e−4
TPR 99.40 97.94 93.21 97.53 100.00 100.00 5.52e−4
FPR 89.20 97.94 93.21 97.53 100.00 0.00 8.35e−2

Table 41: Fairness metrics by origin (model with selected variables)

• By marital status

– The acceptance rate is lowest for Separated and highest for Missing, then Married.
– The true positive rates are between 97.54% and 99.99%, lowest for Widowed and

highest for Missing, then Married.
– The false positive rate is lowest for Widowed, at 78.79% and highest for Separated

and Unmarried, at 100%.

The Separated class is the most disadvantaged under the statistical parity definition,
Widowed under the equal opportunity and equalized odds definitions.

(%) Married Missing Single Widowed Divorced Separated Unmarried Var
AR 99.23 99.99 98.82 97.29 97.47 95.75 98.44 1.72e−4
TPR 99.33 99.99 98.95 97.54 97.69 95.71 98.43 1.71e−4
FPR 88.16 97.10 84.30 78.79 82.19 100.00 100.00 6.76e−3

Table 42: Fairness metrics by marital status (model with selected variables)
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To conclude, the most disadvantaged group is not the same depending on the definition of
fairness that is used.

5.4 Removing protected variables to avoid direct discrimination

We will now compare the model with the protected variables to the model without protected
variables. As we saw in the simulated case, removing the protected variables is not the perfect
solution as it does not prevent discrimination. Simply ignoring the sensitive attributes gives
larger weights to variables that are correlated with them.

Here, we will apply a regression model to all variables except the sensitive ones. The
coefficients are given in appendix F.

Figure 27 shows the importance of each variable. The main difference that we can ob-
serve, compared to the model with all variables, is that the variable Site_rec_WHO08_Male
Genital Organs now has a negative coefficient, with a consequent standard error. Other
than that, the weights stayed in the same order, with some amplitude variations.

Figure 27: Coefficients and their standard errors (black lines), model without protected
variables

Performance evaluation Figure 28 gives the ROC curve. The model with all selected
variables had an AUC of 0.8769, and without protected variables the model has an AUC of
0.8778, which is slightly higher.
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Figure 28: ROC curve for the model without the protected variables

Fairness evaluation

• Globally

The acceptance rate, true positive rate and false positive rate have slightly decreased
compared to the model using all variables.

With all variables Without protected variables
(%) Global (%) Global
AR 99.26 AR 99.20
TPR 99.35 TPR 99.29
FPR 87.45 FPR 86.26

Table 43: Global fairness metrics

• By sex

– The acceptance rates difference has decreased, and Female kept the higher value.
– The true positive rates for Female and Male are closer than in the model with all

variables. The Female category still has a higher TPR.
– The false positive rates are slightly closer than previously. The Female group still

has a higher FPR.

Male is still disadvantaged under all three fairness definitions, although the gaps in metrics
have narrowed.

With all variables Without protected variables
(%) Female Male Difference Sex Female Male Difference
AR 99.67 98.91 .76 AR 99.46 98.97 .49
TPR 99.71 99.03 .69 TPR 99.52 99.10 .42
FPR 90.18 86.30 3.87 FPR 88.76 84.97 3.79

Table 44: Fairness metrics by sex

• By origin

– The lowest acceptance rate has increased and the highest has stayed at 100%, for
Missing. Aside from this category, the highest AR is still for White and the lowest
still for Black.
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– Black still has the lowest true positive rate, but it has increased. Missing still has
the highest TPR, at 100%. The second highest is for American Indian/AK Native,
which had a TPR of 100% in the previous model.

– Apart from Missing, White had the lowest false positive rate but now Black does.
American Indian/AK Native had the highest FPR but now Hispanic does.

Black is still the most disadvantaged group under the statistical parity and equal op-
portunity definitions. With the previous model, we could not conclude on the most
disadvantaged group under the equalized odds definition, but here without taking into
account the value for Missing, Black is the most disadvantaged group.

With all variables

(%) White Hispanic Black Asian or
Pacific Islander

American Indian
/AK Native Missing Var

AR 99.33 97.70 92.53 96.63 98.72 100.00 6.10e−4
TPR 99.40 97.94 93.21 97.53 100.00 100.00 5.52e−4
FPR 89.20 97.94 93.21 97.53 100.00 0.00 8.35e−2

Without protected variables

(%) White Hispanic Black Asian or
Pacific Islander

American Indian
/AK Native Missing Var

AR 99.23 98.76 93.85 96.68 99.10 100.00 4.37e−4
TPR 99.31 98.88 95.32 97.05 99.54 100.00 2.71e−4
FPR 87.07 89.66 45.45 70.00 66.67 0.00 9.28e−2

Table 45: Fairness metrics by origin

• By marital status

– Compared to the previous model, the acceptance rates are closer to each other, with
the lowest value going from 95.75% for Separated to 97.48% for Unmarried and the
highest value going from 99.99% to 99.89%, both for Missing.

– The true positive rates are also closer to each other. Widowed had the lowest TPR,
but now Unmarried does. Missing still has the highest.

– The false positive rates are also closer to each other. Widowed still has the lowest
FPR and Unmarried still has the highest. Separated had the highest with Unmarried,
but now has a lower FPR.

For statistical parity, we are closer to fairness but the most disadvantaged group is not
the same. For equal opportunity and equalized odds, we are a little closer to fairness and
Widowed is still the most disadvantaged group.
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With all variables
(%) Married Missing Single Widowed Divorced Separated Unmarried Var
AR 99.23 99.99 98.82 97.29 97.47 95.75 98.44 1.72e−4
TPR 99.33 99.99 98.95 97.54 97.69 95.71 98.43 1.71e−4
FPR 88.16 97.10 84.30 78.79 82.19 100.00 100.00 6.76e−2

Without protected variables
(%) Married Missing Single Widowed Divorced Separated Unmarried Var
AR 99.01 99.89 99.06 97.74 98.14 97.75 97.48 6.85e−5
TPR 99.12 99.91 99.15 98.13 98.29 97.96 97.44 6.23e−5
FPR 85.43 92.75 87.96 78.72 87.32 85.71 100.00 3.78e−3

Table 46: Fairness metrics by marital status

To conclude, the performance metrics have not deteriorated too much compared to the model
using all variables. For Sex, the fairness is better under all three definitions and the same group
remains in a disadvantage position. For Origin, we also have the same most disadvantaged group
as in the model using all variables, for some metrics the fairness has improved and for others
it has deteriorated. For marital status, fairness has improved but for one of the definitions the
most diasadvantaged group is not the same as before.

5.5 Transforming the non-protected variables to mitigate indirect dis-
crimination

As we have done for the simulated data, we will change the basis formed by the centered vari-
ables to obtain transformed non-sensitive explanatory variables uncorrelated with the sensitive
ones. We are dealing with 12 sensitive variables, because the sensitive variables Sex, Origin
and Mar_stat have been converted to dummy variables. The procedure is the exact same as
in the simulated case, but with more variables.

Application to the data We apply the procedure to all explanatory variables (ie not to
the exposure nor the variable of interest) and obtain the projected non-sensitive variables that
are uncorrelated to the sensitive ones. Figure 29 shows the correlation matrix before and after
orthogonal projection. The correlations between the sensitive and other variables are framed
in blacked. On the left, we can see a few correlations (blue and red boxes) and on the right,
they are all null (only grey boxes). As expected, these results are the same as in the simulated
case.
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(a) Original data (b) Transformed data

Figure 29: Heatmap of correlations, before and after change of basis,
correlations between the sensitive attributes and the others framed in black

Applying the model We will now apply the logistic regression model to the projected non-
sensitive variables, keeping the exposure as weights, to predict the probabilities of death due to
melanoma of the skin. We will compare the performance and fairness metrics of this model to
the ones of the model without protected variables. The coefficients are presented in appendix G.

Figure 30 helps us visualize the coefficients and their standard errors. The most no-
ticeable difference with the coefficients of the model without protected variables concerns
Site_rec_WHO08_Male Genital Organs which still has a large standard error but a pos-
itive coefficient instead of a negative one. We have the oppposite effect for Laterality_Paired
site midline tumor.
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Figure 30: Coefficients and their standard errors (model with transformed variables)

Performance evaluation Looking at the ROC curve in figure 31, the model performances
have once again downgraded: we went from an AUC of 0.8778 (model without the protected
variables) to an AUC of 0.8534, which still indicates good predictive performance.

Figure 31: ROC curve for the model with transformed variables
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Fairness evaluation

• Globally, the AR, TPR and FPR are higher than for the model without protected vari-
ables. The AR and FPR are 0.1 point higher and the FPR 0.7 point higher.

Without protected variables Transformed variables
(%) Global (%) Global
AR 99.20 AR 99.30
TPR 99.29 TPR 99.39
FPR 86.26 FPR 86.92

Table 47: Global fairness metrics

• By sex

– The acceptance rates are now only 0.03 point apart.

– The true positive rates are only 0.04 point apart.

– The false positive rates are further apart and have changed signs.

We have approximately reached statistical parity when looking at the Sex variable: both
groups are treated fairly by the model. We have also approximately reached equal oppor-
tunity. As the FPR are now 9.02 points apart, we are further away from the definition of
equalized odds, with now the Female category being disadvantaged by the model.

Without protected variables Transformed variables
(%) Female Male Difference Sex Female Male Difference
AR 99.46 98.97 .49 AR 99.32 99.29 .03
TPR 99.52 99.10 .42 TPR 99.41 99.37 .04
FPR 88.76 84.97 3.79 FPR 80.75 89.77 -9.02

Table 48: Fairness metrics by sex

• By origin

– The acceptances rates are now very close to each other. The order is the same
except for Black and Asian that switched places (the two lowest acceptance rates).
The variance in acceptances rates is of 1.82e−5.

– The true positive rates are closer to each other than in the case without protected
variables. The order is the same except for the American Indian/AK Native that
went from second highest TPR to second lowest. The variance in true positive rates
is of 1.23e−5.

– The false positive rates are further apart than before, with a variance of 0.12. The
order has been changed: Hispanic had the highest FPR but now has the fourth
highest. Black and American Indian/AK Native respectively had the fifth and fourth
highest but now have the same highest. Missing still has the lowest.

We have approximately reached statistical parity and equal opportunity when looking
at the Origin variable, as we have very close acceptance and true positive rates. For
equalized odds, we are further away from fairness as the false positive rates are further
apart.
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Without protected variables

(%) White Hispanic Black Asian or
Pacific Islander

American Indian
/AK Native Missing Var

AR 99.23 98.76 93.85 96.68 99.10 100.00 4.37e−4
TPR 99.31 98.88 95.32 97.05 99.54 100.00 2.71e−4
FPR 87.07 89.66 45.45 70.00 66.67 0.00 9.28e−2

Transformed variables

(%) White Hispanic Black Asian or
Pacific Islander

American Indian
/AK Native Missing Var

AR 99.30 98.93 98.88 98.62 99.04 99.96 1.82e−5
TPR 99.39 99.18 98.85 99.16 99.02 99.96 1.23e−5
FPR 87.45 76.92 100.00 63.64 100.00 0.00 1.18e−1

Table 49: Fairness metrics by origin

• By marital status

– The acceptance rates are now almost equal, with a variance of 1.83e−5.
– The same goes for the true positive rates, with a variance of 1.70e−5.
– The false positive rates are a lot further apart.

We have approximately reached statistical parity and equal opportunity. For equalized
odds, we are further away.

Without protected variables
(%) Married Missing Single Widowed Divorced Separated Unmarried Var
AR 99.01 99.89 99.06 97.74 98.14 97.75 97.48 6.85e−5
TPR 99.12 99.91 99.15 98.13 98.29 97.96 97.44 6.23e−5
FPR 85.43 92.75 87.96 78.72 87.32 85.71 100.00 3.78e−3

With transformed variables
(%) Married Missing Single Widowed Divorced Separated Unmarried Var
AR 99.12 99.77 99.06 99.19 99.07 98.40 98.47 1.83e−5
TPR 99.23 99.79 99.18 99.42 99.21 98.66 98.47 1.70e−5
FPR 86.13 92.86 84.40 86.96 90.12 75.00 0.00 9.31e−2

Table 50: Fairness metrics by marital status

5.6 Conclusion on the methods

Just like in the simulated case, we compared the performance and fairness of the logistic
regression model using three different types of explanatory variables: all variables, only non-
sensitive variables, and transformed non-sensitive variables. Visual results by sensitive variables
can be found in appendices H, I and J.
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The model using all variables has the best results in terms of AUC, with only non-sensitive
variables we have a decrease in AUC and finally with transformed non-sensitive variables the
AUC is the lowest. This all shows the trade-off between performance and fairness.

In terms of fairness, the model using all variables treats unfairly the different protected
groups. By Sex, Male is disadvantaged under all three definitions of fairness. By Origin, Black
is the most disadvantaged group under the statistical parity and equal opportunity definitions.
For equalized odds, we cannot conclude. By Marital status, Separated is the most disadvantaged
category under the statistical parity definition and Widowed under the two others.

When we remove the protected variables, thus avoiding direct discrimination, the results
depend on the relationships the protected variables have with the other variables. By sex,
fairness improves under all definitions, but Male is still disadvantaged. By Origin, fairness
improves under the statistical parity and equal opportunity definitions, with Black still being the
most disadvantaged group. Under the equalized odds definition, one involved metric improves
but the other does not. By Marital status, fairness improves under all definitions. For statistical
parity, Unmarried is now the most disadvantaged group instead of Separated. For the other
definitions, Widowed is still the most disadvantaged group.

Finally, applying the change of basis method transformed the non-sensitive variables and
we now have a null correlation with the sensitive variables. Applying the model, we have the
expected results: we are now very close to respecting statistical parity. Looking at the two
other definitions, we are closer to equal opportunity. Looking at the metrics for equalized odds,
the fairness is worse, so we can conclude that all fairness definitions are not compatible with
each other.
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Conclusion

The goal of this thesis was to mitigate indirect discrimination when using Machine Learning
models for insurance mortality data. We have provided the reader with an innovative method
based on mathematical concepts of linear algebra to achieve this goal. Looking first at a
simulated case allowed us to grasp the intricate effects of discrimination mechanisms, and gave
us insights as to how to tackle the real use case.

We have made a few approximations, as reminded throughout the thesis. Firstly, we have
chosen to focus on only one definition of fairness, statistical parity. Although it is the most
popular in research articles, we are not certain that it will be the one chosen by regulators
and policy makers in their control for fairness. Secondly, statistical parity is an independence
condition, and we have approximated dependence with its first-order component, correlation.
Our method is therefore a first step towards fairness, but might not be sufficient if variables
have intricate and complex relationships with each other. Although, as we have mentioned, if
regulators decide to use such a metric to control fairness, they will need to take into account
acceptability threshold around the goal value of the metric, because of its statistical nature.
Lastly, with our transformation of the non-sensitive variables, we have interpretability issues
as the new vectors are a combination of the old ones. Explaining to an insured or even to other
less technical employees of the insurance company, why premiums vary may be tricky as they
are based on the mortality rates that come from the use of the transformed variables.

Further developments around this subject should thus focus on expanding the method to
all forms of dependence instead of correlation only, and even looking at ways of adapting the
method to other fairness definitions. Other improvements may include adaptation to regression
problems, which are also encountered by insurers.
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A Reminder on confidence intervals
As fairness metrics are statistical, confidence intervals have to be taken into account. A

legal decision revolving around a metric cannot overlook this aspect and if a value is given as
a fairness standard, there has to be some interval within which is it acceptable to be.

Suppose we have a sample (X1, . . . , Xn) following a normal distribution N (µ, σ2). The
goal is to provide a confidence interval for µ. With µ̂ and σ̂ the unbiased mean and standard
deviation estimators:

µ̂ = X =
1

n

n∑
i=1

Xi

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(Xi −X)2

Then T =
√
n µ̂−µ

σ̂
follows a Student law with (n-1) degrees of freedom. Choosing the quantile

t such that −t < T < t, we can write

µ̂− tσ̂√
n
< µ < µ̂+

tσ̂√
n

Proof.

P(−t < T < t) = P(T < t)− P(T < −t)

PT < t− P(T > t)

= 2P(T < t)− 1

So
P(−tα/2 < T < tα/2) = 2(1− α/2)− 1 = 1− α

So the confidence interval is

−tα/2 < T < tα/2 ⇐⇒ µ̂− tα/2
σ̂√
n
< µ < µ̂+ tα/2

σ̂√
n

The formula can be approximated thanks to the asymptotic distribution of µ̂ which is
normally distributed: µ̂ ∼ N (µ, σ2/n). Therefore,

µ̂− |zα/2|
σ̂√
n
< µ < µ̂+ |zα/2|

σ̂√
n

with zα/2 the standard normal quantile of level α/2. For α = 5%, |z2.5%| = 1.96.
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B Reminder on the logistic regression
This section gives a quick reminder about the logistic regression [12]. A binary logistic model

is used to model the probability of a certain class: Y ∈ {0, 1}. The model assumes that the
outcomes conditioned on the explanatory variables follow a Bernoulli distribution:

Yj|X(1)
j = x

(1)
j , . . . , X

(n)
j = x

(n)
j ∼ B(pj)

with pj = P(Yj = 1|X(1)
j = x

(1)
j , . . . , X

(n)
j = x

(n)
j ) and that the logit of this probability is

modelled as a linear combination of the n explanatory variables:

logit(P(Yj = 1|X(1)
j = x

(1)
j , . . . , X

(n)
j = x

(n)
j )) = b0 + b1x

(1)
j + · · ·+ bnx

(n)
j

= B · xj

with B = (b0, . . . , bn) and xj = (1, x
(1)
j , . . . , x

(n)
j )T

As a reminder,
logit(p) = ln(

p

1− p
), p ∈ (0, 1)

and
logit−1(x) =

1

1 + e−x
, x ∈ R

The vector B is estimated by maximizing the log-likelihood. The likelihood of an independently
and identically distributed sample of size J is

L = P(Y1 = y1, . . . , YJ = yJ |X(1) = x(1), . . . , X(n) = x(n))

=
J∏

j=1

P(Yj = yj|X(1)
j = x

(1)
j , . . . , X

(n)
j = x

(n)
j )

=
J∏

j=1

1

1 + e−(b0+b1x
(1)
j +···+bnx

(n)
j )

We can then find the B̂ that maximizes log(L) and classify a new individual j by applying
Bayes’ rule:

Yj = 1 ⇐⇒ P(Yj = 1|Xj = xj) > P(Yj = 0|Xj = xj)

⇐⇒ P(Yj = 1|Xj = xj) >
1

2

⇐⇒ 1

1 + e−B̂·xj

>
1

2

⇐⇒ B̂ · xj > 0

So
Yj = 1B̂·xj>0
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C The Gram-Schmidt process
The Gram-Schmidt process [28] is a method for orthonormalizing a set of vectors in an inner

product space. The process takes a finite and linearly independent set of vectors (u1, . . . , un)
and produces a set of orthogonal vectors (v1, . . . , vn). The process works as follows:

v1 = u1

v2 = u2 −
⟨u2, v1⟩
⟨v1, v1⟩

v1

. . .

vn = un −
n−1∑
k=1

⟨un, vk⟩
⟨vk, vk⟩

vk

A first idea was therefore to use this process. The issue with this method is that we obtain
a transformation of all variables, both sensitive and non-sensitive, except for the first one as
v1 = u1, and they are all orthogonal to each other, which is not what we are looking for.
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D Variable description (pseudo database)

AGE: Age of individual in time interval
Numerical (int)
18-80

Age_dx: Age of individual at diagnosis
Numerical (int)
18-80

AYA_site_rec20: Type of melanoma
Categorical
Nodular melanoma, Superficial spreading/low cumulative sun damage
melanoma, Other malignant

DURATION: Time since diagnosis (in years)
Numerical (int)
N

Death_skin: Individual died of skin melanoma in time interval
Numerical (int)
{0, 1}

EXPO: Exposure of individual in time interval
Numerical (float)
[0, 1]

Extent: How far the tumor has spread at diagnosis
Categorical
In situ, Localized, Regional, Distant, Missing

Laterality Side of the body tumor originated on
Categorical
Right origin, Left origin, Bilateral, . . .

Mar_stat Marital status of individual at diagnosis
Categorical
Married, Single, Divorced, . . .

Metastasis: Metastatic state at diagnosis
Categorical
M0, M1

Mitotic rate: Number of mitoses per mm2 at diagnosis
Numerical (int)
0-11

Positive_Node: Spread to regional lymph nodes at diagnosis
Categorical
N0, N1, N2, N3, Missing

Origin: Origin of individual
Categorical
Hispanic, White, Asian, . . .

reg_nod_ex: Number of regional lymph nodes that were removed and examined
Numerical (int)
N

reg_nod_pos: Number of regional lymph nodes that contain metastases at diagnosis
Numerical (int)
N

88



Sex: Sex of the patient
Categorical
Male, Female

Site_rec_WHO08: Origin site of primary tumor
Categorical
Pleura, Vulva, Male Genital Organs

Stage: Cancer stage at diagnosis
Categorical
I, II, III, IV

Surg_LN: Surgery of lymph nodes
Categorical
Surgery, No surgery

Surg_oth: Surgery of other sites
Categorical
Surgery, No surgery

Surg_primsite: Surgery of primary site
Categorical
Surgery, No surgery

Tot_num_benin: Total number of benign tumors at diagnosis
Numerical (int)
N

Tot_num_in_situ: Total number of in situ tumors at diagnosis
Numerical (int)
N

Tumor: Tumor size at diagnosis
Categorical
T0, T1, T2, T3, T4

Ulceration: Presence of ulceration (break on the skin) at diagnosis
Categorical
No ulceration, Ulceration, Missing

YEAR: Year of time interval
Numerical (int)
2004-2018

Yr_dx: Year of diagnosis
Numerical (int)
2004-2018
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E Coefficients of the model with all selected variables

Variable Coefficient Standard error P-value
const -7.1992 0.118 0.000
DURATION -0.0618 0.007 0.000
AGE 0.0211 0.002 0.000
Sex_Female -0.3976 0.043 0.000
reg_nod_pos 0.0369 0.007 0.000
Mitotic rate 0.0043 0.006 0.494
Tot_num_in_situ -0.0540 0.023 0.020
Laterality_Bilateral 0.7446 0.331 0.025
Laterality_Not a paired site 0.5161 0.060 0.000
Laterality_One side 0.1908 0.200 0.339
Laterality_Paired site 0.3998 0.093 0.000
Laterality_Paired site midline tumor -0.0055 0.126 0.965
Laterality_Right origin -0.0595 0.044 0.175
Ulceration_Missing 0.0898 0.099 0.362
Ulceration_Ulceration 0.7611 0.046 0.000
Site_rec_WHO08_Male Genital Organs 0.1275 0.561 0.820
Site_rec_WHO08_Vulva 0.6528 0.176 0.000
Origin_American Indian/AK Native 0.3888 0.292 0.183
Origin_Asian or Pacific Islander 0.1445 0.156 0.355
Origin_Black 0.3856 0.168 0.021
Origin_Hispanic 0.1710 0.108 0.114
Origin_Missing -3.0668 1.001 0.002
Mar_stat_Divorced 0.3712 0.064 0.000
Mar_stat_Missing -0.4660 0.071 0.000
Mar_stat_Separated 0.2985 0.225 0.185
Mar_stat_Single 0.2562 0.055 0.000
Mar_stat_Unmarried 0.0923 0.426 0.828
Mar_stat_Widowed 0.3620 0.087 0.000
Extent_Distant 0.8813 0.077 0.000
Extent_Missing 0.5145 0.167 0.002
Extent_Regional 0.5354 0.055 0.000
Surg_primsite_Missing 0.3650 0.251 0.146
Surg_primsite_No surgery 0.6385 0.126 0.000
Tumor_Missing 1.0028 0.122 0.000
Tumor_T0 0.6995 0.183 0.000
Tumor_T2 1.0626 0.066 0.000
Tumor_T3 1.4361 0.071 0.000
Tumor_T4 1.6748 0.078 0.000
Positive_Node_Missing 0.3923 0.133 0.003
Positive_Node_N1 0.8841 0.055 0.000
Positive_Node_N2 1.0769 0.066 0.000
Positive_Node_N3 1.4402 0.086 0.000

Table 51: Coefficients of the model with selected variables
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F Coefficients of the model without protected variables

Variable Coefficient Standard error P-value
const -7.4933 0.108 0.000
DURATION -0.0662 0.007 0.000
AGE 0.0225 0.002 0.000
reg_nod_pos 0.0384 0.007 0.000
Mitotic rate -0.0019 0.006 0.761
Tot_num_in_situ -0.0680 0.023 0.004
Laterality_Bilateral 0.4795 0.369 0.194
Laterality_Not a paired site 0.5809 0.059 0.000
Laterality_One side 0.3412 0.187 0.067
Laterality_Paired site 0.3723 0.093 0.000
Laterality_Paired site midline tumor 0.0578 0.124 0.642
Laterality_Right origin -0.0745 0.044 0.088
Ulceration_Missing 0.1616 0.095 0.090
Ulceration_Ulceration 0.7454 0.046 0.000
Site_rec_WHO08_Male Genital Organs -0.1704 0.624 0.785
Site_rec_WHO08_Vulva 0.3408 0.176 0.053
Extent_Distant 0.9361 0.078 0.000
Extent_Missing 0.6202 0.157 0.000
Extent_Regional 0.6152 0.056 0.000
Surg_primsite_Missing 0.2659 0.247 0.281
Surg_primsite_No surgery 0.5068 0.122 0.000
Tumor_Missing 1.0455 0.118 0.000
Tumor_T0 0.7275 0.182 0.000
Tumor_T2 1.1378 0.066 0.000
Tumor_T3 1.5450 0.071 0.000
Tumor_T4 1.8266 0.078 0.000
Positive_Node_Missing 0.3997 0.124 0.001
Positive_Node_N1 0.9418 0.055 0.000
Positive_Node_N2 1.1609 0.066 0.000
Positive_Node_N3 1.4787 0.087 0.000

Table 52: Coefficients of the model without protected variables
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G Coefficients of the model with transformed variables

Variable Coefficient Standard error P-value
const -5.7105 0.031 0.000
DURATION -0.0617 0.007 0.000
AGE 0.0169 0.002 0.000
reg_nod_pos 0.0425 0.007 0.000
Mitotic rate 0.0006 0.006 0.930
Tot_num_in_situ -0.0732 0.024 0.002
Laterality_Bilateral 0.3711 0.379 0.327
Laterality_Not a paired site 0.5309 0.061 0.000
Laterality_One side 0.2291 0.194 0.237
Laterality_Paired site 0.2427 0.095 0.011
Laterality_Paired site midline tumor -0.0276 0.128 0.829
Laterality_Right origin -0.0791 0.043 0.067
Ulceration_Missing 0.0913 0.097 0.348
Ulceration_Ulceration 0.8420 0.047 0.000
Site_rec_WHO08_Male Genital Organs 0.1864 0.648 0.774
Site_rec_WHO08_Vulva 0.2293 0.182 0.207
Extent_Distant 0.8314 0.079 0.000
Extent_Missing 0.6594 0.155 0.000
Extent_Regional 0.5229 0.056 0.000
Surg_primsite_Missing 0.4959 0.237 0.037
Surg_primsite_No surgery 0.5580 0.117 0.000
Tumor_Missing 0.8921 0.118 0.000
Tumor_T0 0.9362 0.178 0.000
Tumor_T2 1.0608 0.066 0.000
Tumor_T3 1.4789 0.071 0.000
Tumor_T4 1.8200 0.078 0.000
Positive_Node_Missing 0.2745 0.122 0.024
Positive_Node_N1 1.0127 0.056 0.000
Positive_Node_N2 1.2251 0.067 0.000
Positive_Node_N3 1.5559 0.087 0.000

Table 53: Coefficients of the model with transformed variables
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H Fairness metrics by sex

(a) All variables (b) Without protected (c) Transformed variables

Figure 32: Acceptance rates TP+FP
TP+TN+FP+FN by sex

(a) All variables (b) Without protected (c) Transformed variables

Figure 33: True positive rates TP
TP+FN by sex

(a) All variables (b) Without protected (c) Transformed variables

Figure 34: False positive rates FP
FP+TN by sex
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I Fairness metrics by origin

(a) All variables (b) Without protected (c) Transformed variables

Figure 35: Acceptance rates TP+FP
TP+TN+FP+FN by origin

(a) All variables (b) Without protected (c) Transformed variables

Figure 36: True positive rates TP
TP+FN by origin

(a) All variables (b) Without protected (c) Transformed variables

Figure 37: False positive rates FP
FP+TN by origin
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J Fairness metrics by marital status

(a) All variables (b) Without protected (c) Transformed variables

Figure 38: Acceptance rates TP+FP
TP+TN+FP+FN by marital status

(a) All variables (b) Without protected (c) Transformed variables

Figure 39: True positive rates TP
TP+FN by marital status

(a) All variables (b) Without protected (c) Transformed variables

Figure 40: False positive rates FP
FP+TN by marital status
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